• Treffer 7 von 7
Zurück zur Trefferliste

Targeting Echinococcus multilocularis Stem Cells by Inhibition of the Polo-Like Kinase EmPlk1

Zitieren Sie bitte immer diese URN: urn:nbn:de:bvb:20-opus-112806
  • Background Alveolar echinococcosis (AE) is a life-threatening disease caused by larvae of the fox-tapeworm Echinococcus multilocularis. Crucial to AE pathology is continuous infiltrative growth of the parasite's metacestode stage, which is driven by a population of somatic stem cells, called germinative cells. Current anti-AE chemotherapy using benzimidazoles is ineffective in eliminating the germinative cell population, thus leading to remission of parasite growth upon therapy discontinuation. Methodology/Principal findings We hereinBackground Alveolar echinococcosis (AE) is a life-threatening disease caused by larvae of the fox-tapeworm Echinococcus multilocularis. Crucial to AE pathology is continuous infiltrative growth of the parasite's metacestode stage, which is driven by a population of somatic stem cells, called germinative cells. Current anti-AE chemotherapy using benzimidazoles is ineffective in eliminating the germinative cell population, thus leading to remission of parasite growth upon therapy discontinuation. Methodology/Principal findings We herein describe the characterization of EmPlk1, encoded by the gene emplk1, which displays significant homologies to members of the Plk1 sub-family of Polo-like kinases that regulate mitosis in eukaryotic cells. We demonstrate germinative cell-specific expression of emplk1 by RT-PCR, transcriptomics, and in situ hybridization. We also show that EmPlk1 can induce germinal vesicle breakdown when heterologously expressed in Xenopus oocytes, indicating that it is an active kinase. This activity was significantly suppressed in presence of BI 2536, a Plk1 inhibitor that has been tested in clinical trials against cancer. Addition of BI 2536 at concentrations as low as 20 nM significantly blocked the formation of metacestode vesicles from cultivated Echinococcus germinative cells. Furthermore, low concentrations of BI 2536 eliminated the germinative cell population from mature metacestode vesicles in vitro, yielding parasite tissue that was no longer capable of proliferation. Conclusions/Significance We conclude that BI 2536 effectively inactivates E. multilocularis germinative cells in parasite larvae in vitro by direct inhibition of EmPlk1, thus inducing mitotic arrest and germinative cell killing. Since germinative cells are decisive for parasite proliferation and metastasis formation within the host, BI 2536 and related compounds are very promising compounds to complement benzimidazoles in AE chemotherapy. Author Summary The lethal disease AE is characterized by continuous and infiltrative growth of the metacestode larva of the tapeworm E. multilocularis within host organs. This cancer-like progression is exclusively driven by a population of parasite stem cells (germinative cells) that have to be eliminated for an effective cure of the disease. Current treatment options, using benzimidazoles, are parasitostatic only, and thus obviously not effective in germinative cell killing. We herein describe a novel, druggable parasite enzyme, EmPlk1, that specifically regulates germinative cell proliferation. We show that a compound, BI 2536, originally designed to inhibit the human ortholog of EmPlk1, can also inhibit the parasite protein at low doses. Furthermore, low doses of BI 2536 eliminated germinative cells from Echinococcus larvae in vitro and prevented parasite growth and development. We propose that BI 2536 and related compounds are promising drugs to complement current benzimidazole treatment for achieving parasite killing.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Autor(en): Andreas Schubert, Uriel Koziol, Katia Cailliau, Mathieu Vanderstraete, Colette Dissous, Klaus Brehm
URN:urn:nbn:de:bvb:20-opus-112806
Dokumentart:Artikel / Aufsatz in einer Zeitschrift
Institute der Universität:Medizinische Fakultät / Institut für Hygiene und Mikrobiologie
Sprache der Veröffentlichung:Englisch
Erscheinungsjahr:2014
Originalveröffentlichung / Quelle:PLoS Neglected Tropical Diseases 8(6): e2870. doi:10.1371/journal.pntd.0002870
DOI:https://doi.org/10.1371/journal.pntd.0002870
Allgemeine fachliche Zuordnung (DDC-Klassifikation):6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Freie Schlagwort(e):Benzimidazoles; Cancer treatment; Echinococcus; Host-pathogen interactions; Larvae; Sequence motif analysis; Vesicles; Xenopus oocytes
Datum der Freischaltung:13.05.2015
Sammlungen:Open-Access-Publikationsfonds / Förderzeitraum 2014
Lizenz (Deutsch):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung