The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 38 of 70
Back to Result List

Anti-CNTN1 IgG3 induces acute conduction block and motor deficits in a passive transfer rat model

Please always quote using this URN: urn:nbn:de:bvb:20-opus-200476
  • Background: Autoantibodies against the paranodal protein contactin-1 have recently been described in patients with severe acute-onset autoimmune neuropathies and mainly belong to the IgG4 subclass that does not activate complement. IgG3 anti-contactin-1 autoantibodies are rare, but have been detected during the acute onset of disease in some cases. There is evidence that anti-contactin-1 prevents adhesive interaction, and chronic exposure to anti-contactin-1 IgG4 leads to structural changes at the nodes accompanied by neuropathic symptoms.Background: Autoantibodies against the paranodal protein contactin-1 have recently been described in patients with severe acute-onset autoimmune neuropathies and mainly belong to the IgG4 subclass that does not activate complement. IgG3 anti-contactin-1 autoantibodies are rare, but have been detected during the acute onset of disease in some cases. There is evidence that anti-contactin-1 prevents adhesive interaction, and chronic exposure to anti-contactin-1 IgG4 leads to structural changes at the nodes accompanied by neuropathic symptoms. However, the pathomechanism of acute onset of disease and the pathogenic role of IgG3 anti-contactin-1 is largely unknown. Methods: In the present study, we aimed to model acute autoantibody exposure by intraneural injection of IgG of patients with anti-contacin-1 autoantibodies to Lewis rats. Patient IgG obtained during acute onset of disease (IgG3 predominant) and IgG from the chronic phase of disease (IgG4 predominant) were studied in comparison. Results: Conduction blocks were measured in rats injected with the “acute” IgG more often than after injection of “chronic” IgG (83.3% versus 35%) and proved to be reversible within a week after injection. Impaired nerve conduction was accompanied by motor deficits in rats after injection of the “acute” IgG but only minor structural changes of the nodes. Paranodal complement deposition was detected after injection of the “acute IgG”. We did not detect any inflammatory infiltrates, arguing against an inflammatory cascade as cause of damage to the nerve. We also did not observe dispersion of paranodal proteins or sodium channels to the juxtaparanodes as seen in patients after chronic exposure to anti-contactin-1. Conclusions: Our data suggest that anti-contactin-1 IgG3 induces an acute conduction block that is most probably mediated by autoantibody binding and subsequent complement deposition and may account for acute onset of disease in these patients. This supports the notion of anti-contactin-1-associated neuropathy as a paranodopathy with the nodes of Ranvier as the site of pathogenesis.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Kathrin DopplerORCiD, Yasmin Schuster, Luise Appeltshauser, Lydia Biko, Carmen Villmann, Andreas Weishaupt, Christian Werner, Claudia Sommer
URN:urn:nbn:de:bvb:20-opus-200476
Document Type:Journal article
Faculties:Medizinische Fakultät / Neurologische Klinik und Poliklinik
Fakultät für Biologie / Theodor-Boveri-Institut für Biowissenschaften
Language:English
Parent Title (English):Journal of Neuroinflammation
Year of Completion:2019
Volume:16
Issue:73
Source:Journal of Neuroinflammation (2019) 16:73. DOI: 10.1186/s12974-019-1462-z
DOI:https://doi.org/10.1186/s12974-019-1462-z
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Tag:CIDP; anti-contactin-1; autoantibody; complement deposition; paranodopathy; passive transfer
Release Date:2020/03/30
Collections:Open-Access-Publikationsfonds / Förderzeitraum 2019
Licence (German):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung 4.0 International