• Treffer 4 von 4
Zurück zur Trefferliste

Osmotic adaptation and compatible solute biosynthesis of phototrophic bacteria as revealed from genome analyses

Zitieren Sie bitte immer diese URN: urn:nbn:de:bvb:20-opus-220161
  • Osmotic adaptation and accumulation of compatible solutes is a key process for life at high osmotic pressure and elevated salt concentrations. Most important solutes that can protect cell structures and metabolic processes at high salt concentrations are glycine betaine and ectoine. The genome analysis of more than 130 phototrophic bacteria shows that biosynthesis of glycine betaine is common among marine and halophilic phototrophic Proteobacteria and their chemotrophic relatives, as well as in representatives of Pirellulaceae andOsmotic adaptation and accumulation of compatible solutes is a key process for life at high osmotic pressure and elevated salt concentrations. Most important solutes that can protect cell structures and metabolic processes at high salt concentrations are glycine betaine and ectoine. The genome analysis of more than 130 phototrophic bacteria shows that biosynthesis of glycine betaine is common among marine and halophilic phototrophic Proteobacteria and their chemotrophic relatives, as well as in representatives of Pirellulaceae and Actinobacteria, but are also found in halophilic Cyanobacteria and Chloroherpeton thalassium. This ability correlates well with the successful toleration of extreme salt concentrations. Freshwater bacteria in general lack the possibilities to synthesize and often also to take up these compounds. The biosynthesis of ectoine is found in the phylogenetic lines of phototrophic Alpha- and Gammaproteobacteria, most prominent in the Halorhodospira species and a number of Rhodobacteraceae. It is also common among Streptomycetes and Bacilli. The phylogeny of glycine-sarcosine methyltransferase (GMT) and diaminobutyrate-pyruvate aminotransferase (EctB) sequences correlate well with otherwise established phylogenetic groups. Most significantly, GMT sequences of cyanobacteria form two major phylogenetic branches and the branch of Halorhodospira species is distinct from all other Ectothiorhodospiraceae. A variety of transport systems for osmolytes are present in the studied bacteria.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Autor(en): Johannes F. Imhoff, Tanja Rahn, Sven Künzel, Alexander Keller, Sven C. Neulinger
URN:urn:nbn:de:bvb:20-opus-220161
Dokumentart:Artikel / Aufsatz in einer Zeitschrift
Institute der Universität:Fakultät für Biologie / Center for Computational and Theoretical Biology
Sprache der Veröffentlichung:Englisch
Titel des übergeordneten Werkes / der Zeitschrift (Englisch):Microorganisms
ISSN:2076-2607
Erscheinungsjahr:2020
Band / Jahrgang:9
Heft / Ausgabe:1
Aufsatznummer:46
Originalveröffentlichung / Quelle:Microorganisms (2021) 9:1, 46. https://doi.org/10.3390/microorganisms9010046
DOI:https://doi.org/10.3390/microorganisms9010046
Allgemeine fachliche Zuordnung (DDC-Klassifikation):5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Freie Schlagwort(e):ectoine biosynthesis; genomes of photosynthetic bacteria; glycine betaine biosynthesis; osmotic adaptation; phylogeny of osmolyte biosynthesis
Datum der Freischaltung:04.08.2022
Datum der Erstveröffentlichung:26.12.2020
Lizenz (Deutsch):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung 4.0 International