The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 3 of 61
Back to Result List

Quantifizierung morphologischer Veränderungen an Neuronen der lateralen Amygdala in SPRED2-defizienten Mäusen

Quantification of morphological changes on lateral amygdala neurons in SPRED2-deficient mice

Please always quote using this URN: urn:nbn:de:bvb:20-opus-172291
  • In der vorliegenden Dissertation wurden die Folgen einer SPRED2-Defizienz in einem Knockout Mausmodell untersucht. Dabei wurde insbesondere die mögliche Verbindung zur Zwangsstörung, einer psychiatrischen Erkrankung beleuchtet. Das SPRED2-Protein kommt im menschlichen Körper in zahlreichen Geweben vor, besonders im Hirn wurde eine ubiquitäre Expression nachgewiesen und ein Zusammenhang mit der Neurogenese und neuronaler Differenzierung vermutet. Seine regulatorische Funktion besteht in einer inhibitorischen Wirkung auf denIn der vorliegenden Dissertation wurden die Folgen einer SPRED2-Defizienz in einem Knockout Mausmodell untersucht. Dabei wurde insbesondere die mögliche Verbindung zur Zwangsstörung, einer psychiatrischen Erkrankung beleuchtet. Das SPRED2-Protein kommt im menschlichen Körper in zahlreichen Geweben vor, besonders im Hirn wurde eine ubiquitäre Expression nachgewiesen und ein Zusammenhang mit der Neurogenese und neuronaler Differenzierung vermutet. Seine regulatorische Funktion besteht in einer inhibitorischen Wirkung auf den BDNF/TrkB-ERK-Signalweg, welcher u.a. für die Transkription neuronaler Gene verantwortlich ist. Die verwendeten SPRED2-defizienten Mäuse wurden durch Insertion eines Gene-Trap Vektors in das Spred2-Gen generiert. Die Insertion verhindert letztendlich die korrekte Translation des Proteins. Von der durch weitere Verpaarung entstehenden SPRED2-Knockout Mauslinie wurden ausschließlich männliche Tiere verwendet. Im Rahmen einer SPRED2-KO-Studie von der AG Schuh des Physiologischen Instituts der Universität Würzburg, die u.a. die Entgleisung der HHNA mit resultierendem erhöhten Stresshormonspiegel und eine Dysregulation des Mineralhaushaltshormons Aldosteron zeigte, wurden bei den Versuchstieren zwanghafte Verhaltensmuster beobachtet. Daraufhin wurden elektrophysiologische Messungen durchgeführt, die auf eine Anomalie in der synaptischen Übertragung zwischen Thalamus und Amygdala hindeuteten. Erhöhte Effizienz und Erregbarkeit der amygdaloiden Neuronen führten zu der morphologischen Untersuchung, die im Rahmen dieser Arbeit durchgeführt wurden. Da die Afferenzen des Thalamus vorwiegend in den lateralen Kern der Amygdala projizieren, wurde zunächst dieser betrachtet. Ziel der Untersuchung war es, Erkenntnisse darüber zu erlangen, ob der Knockout des SPRED2-Proteins in Mäusen zu einer veränderten Morphologie der Neuronen der lateralen Amygdala führt. Falls dies der Fall sein sollte, könnte damit zumindest ansatzweise das zwanghafte Verhalten der SPRED2-defizienten Mäusen erklärt werden. Die Hirne der Versuchstiere wurden nach der Golgi-Cox-Imprägnierung nach Glaser und Van der Loos und der Einbettung in Celloidin in 150 μm dicke Scheiben geschnitten und anschließend mithilfe eines Hellfeld-Mikroskops und des Neurolucida-Systems analysiert. Quantitativ erfasst und analysiert wurden pyramidale Klasse 1-Neuronen der lateralen Amygdala inklusive absoluter Anzahl und Dichte der Spines an ihren Dendriten. Die Untersuchung zeigte bei SPRED2-KO-Mäusen eine signifikante Erhöhung der mittleren Länge des apikalen Dendriten in Branch order 3 und eine tendenzielle Erhöhung der Gesamtzahl der Spines an den Dendriten in Branch order 1-3 gegenüber den Wildtyp-Mäusen. Daraus lässt sich folgern, dass ein Knockout des SPRED2-Proteins sich auf die Morphologie der Neuronen der lateralen Amygdala auswirkt. Die erhöhte mittlere Länge des apikalen Dendriten in Branch order 3 und die tendenziell erhöhte Spine-Anzahl korrelieren mit der gesteigerten synaptischen Übertragung und Erregbarkeit an amygdaloiden pyramidalen Neuronen. Auf molekularer Ebene kann die Hyperaktivität der lateralen Amygdala als Folge der fehlenden Inhibition des BDNF/TrkB-ERK-Signalwegs und der dadurch veränderten Expression zahlreicher synaptischer Proteine diskutiert werden. Die veränderte Morphologie der Neuronen in der lateralen Amygdala kann eine Ursache für das zwanghafte Verhalten der Mäuse sein, jedoch ist anzunehmen, dass Zwangsstörungen nicht bloß eine monokausale Ursache haben. Diese Arbeit identifiziert SPRED2 als neuen Regulator der Morphologie und Aktivität von Synapsen und die Amygdala als wichtige Hirnregion bei der Entstehung von Zwangsstörungen. SPRED2 ist somit ein vielversprechender Angriffspunkt für andere und spezifischere Untersuchungen der Hirnfunktion und eine potenzielle genetische Ursache für weitere neurologische Erkrankungen.show moreshow less
  • In this present dissertation, the consequences of SPRED2-deficiency in a knockout mouse model have been investigated. In particular, the possible connection to the obsessive-compulsive disorder was examined. The SPRED2 protein is found in many tissues in the human body. Especially in the brain, ubiquitous expression was found and a connection to neurogenesis and neuronal differentiation was suspected. Its regulatory function is an inhibitory effect to the BDNF/TrkB-ERK signaling pathway, which amongst others is responsible for the transcriptionIn this present dissertation, the consequences of SPRED2-deficiency in a knockout mouse model have been investigated. In particular, the possible connection to the obsessive-compulsive disorder was examined. The SPRED2 protein is found in many tissues in the human body. Especially in the brain, ubiquitous expression was found and a connection to neurogenesis and neuronal differentiation was suspected. Its regulatory function is an inhibitory effect to the BDNF/TrkB-ERK signaling pathway, which amongst others is responsible for the transcription of neuronal genes. The SPRED2-deficient mice used were generated by insertion of a gene trap vector into the Spred2 gene. The insertion ultimately prevents the correct translation of the protein. From the SPRED2 knockout mouse line only male animals were used. As part of a SPRED2-KO study by AG Schuh of the Physiological Institute of the University of Würzburg, which showed, inter alia, the derailment of HHNA resulting in increased stress hormone levels and a dysregulation of the mineral household hormone aldosterone, obsessive behaviors were observed in the experimental animals. Subsequently, electrophysiological measurements were performed indicating an abnormality in synaptic transmission between thalamus and amygdala. Increased efficiency and excitability of the amygdaloid neurons led to the morphological investigation, which were accomplished in the context of this work. Since the afferents of the thalamus predominantly project into the lateral nucleus of the amygdala, it was first considered. The aim of the study was to find out if the knockout of the SPRED2 protein in mice leads to an altered morphology of neurons of the lateral amygdala. If so, it could at least somewhat explain the compulsive behavior of SPRED2-deficient mice. The brains of the test animals were cut into 150 μm slices and, after Golgi-Cox impregnation according to Glaser and Van der Loos, embedded in celloidin and then analyzed using a bright field microscope and the Neurolucida system. Quantitatively, pyramidal class 1 neurons of the lateral amygdala were recorded and analyzed, including the absolute number and density of the spines at their dendrites. The study showed a significant increase in the mean length of the apical dendrites in branch order 3 in SPRED2-KO mice and a tendency to increase the total number of spines on the dendrites in branch order 1-3 compared to the wild-type mice. It can be concluded that a knockout of the SPRED2 protein affects the morphology of the neurons of the lateral amygdala. The increased mean length of the apical dendrites in branch order 3 and the tendency to increased spine counts correlate with the increased synaptic transmission and excitability of amygdaloid pyramidal neurons. At the molecular level, the hyperactivity of the lateral amygdala may be discussed as a consequence of the lack of inhibition of the BDNF/TrkB-ERK pathway and the resulting altered expression of numerous synaptic proteins. The altered morphology of the neurons in the lateral amygdala may be a cause of the compulsive behavior of the mice, but it can be assumed that obsessive-compulsive disorder does not merely have a monocausal cause. This work identifies SPRED2 as a new regulator of morphology and activity of synapses and the amygdala as an important brain region in the development of obsessive-compulsive disorder. SPRED2 is thus a promising target for other and more specific studies of brain function and a potential genetic cause for other neurological disorders.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Martin Zechner
URN:urn:nbn:de:bvb:20-opus-172291
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Medizinische Fakultät
Faculties:Medizinische Fakultät / Physiologisches Institut
Referee:Prof. Dr. Kai Schuh, Priv.-Doz. Dr. Angelika Schmitt-Böhrer, Prof. Dr. Philip Tovote
Date of final exam:2018/11/13
Language:German
Year of Completion:2018
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 612 Humanphysiologie
GND Keyword:SPRED2; OCD; Amygdala
Tag:Ras-Raf-Signalweg; SPRED2-defiziente Mäuse; Zwangsstörung
Release Date:2018/11/20
Licence (German):License LogoCC BY-SA: Creative-Commons-Lizenz: Namensnennung, Weitergabe unter gleichen Bedingungen 4.0 International