• Treffer 12 von 51
Zurück zur Trefferliste

Physiological Notch Signaling Maintains Bone Homeostasis via RBPjk and Hey Upstream of NFATc1

Zitieren Sie bitte immer diese URN: urn:nbn:de:bvb:20-opus-133490
  • Notch signaling between neighboring cells controls many cell fate decisions in metazoans both during embryogenesis and in postnatal life. Previously, we uncovered a critical role for physiological Notch signaling in suppressing osteoblast differentiation in vivo. However, the contribution of individual Notch receptors and the downstream signaling mechanism have not been elucidated. Here we report that removal of Notch2, but not Notch1, from the embryonic limb mesenchyme markedly increased trabecular bone mass in adolescent mice. Deletion of theNotch signaling between neighboring cells controls many cell fate decisions in metazoans both during embryogenesis and in postnatal life. Previously, we uncovered a critical role for physiological Notch signaling in suppressing osteoblast differentiation in vivo. However, the contribution of individual Notch receptors and the downstream signaling mechanism have not been elucidated. Here we report that removal of Notch2, but not Notch1, from the embryonic limb mesenchyme markedly increased trabecular bone mass in adolescent mice. Deletion of the transcription factor RBPjk, a mediator of all canonical Notch signaling, in the mesenchymal progenitors but not the more mature osteoblast-lineage cells, caused a dramatic high-bone-mass phenotype characterized by increased osteoblast numbers, diminished bone marrow mesenchymal progenitor pool, and rapid age-dependent bone loss. Moreover, mice deficient in Hey1 and HeyL, two target genes of Notch-RBPjk signaling, exhibited high bone mass. Interestingly, Hey1 bound to and suppressed the NFATc1 promoter, and RBPjk deletion increased NFATc1 expression in bone. Finally, pharmacological inhibition of NFAT alleviated the high-bone-mass phenotype caused by RBPjk deletion. Thus, Notch-RBPjk signaling functions in part through Hey1-mediated inhibition of NFATc1 to suppress osteoblastogenesis, contributing to bone homeostasis in vivo.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Autor(en): Xiaolin Tu, Jianquan Chen, Joohyun Lim, Courtney M. Karner, Seung-Yon Lee, Julia Heisig, Cornelia Wiese, Kameswaran Surendran, Raphael Kopan, Manfred Gessler, Fanxin Long
URN:urn:nbn:de:bvb:20-opus-133490
Dokumentart:Artikel / Aufsatz in einer Zeitschrift
Institute der Universität:Fakultät für Biologie / Theodor-Boveri-Institut für Biowissenschaften
Sprache der Veröffentlichung:Englisch
Titel des übergeordneten Werkes / der Zeitschrift (Englisch):PLoS Genetics
Erscheinungsjahr:2012
Band / Jahrgang:8
Heft / Ausgabe:3
Seitenangabe:e1002577
Originalveröffentlichung / Quelle:PLoS Genetics 8(3): e1002577. doi:10.1371/journal.pgen.1002577
DOI:https://doi.org/10.1371/journal.pgen.1002577
Allgemeine fachliche Zuordnung (DDC-Klassifikation):6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 611 Menschliche Anatomie, Zytologie, Histologie
Freie Schlagwort(e):T cells; alagille syndrome; aortic-valve; axial skeletal defects; expression; human jagged1; mice; mutations; osteoblast differentiation; transcription factor
Datum der Freischaltung:13.01.2017
Lizenz (Deutsch):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung