• search hit 8 of 27
Back to Result List

Die geschlechtsbestimmende Region des Platyfisches Xiphophorus maculatus auf den Geschlechtschromosomen X und Y: Molekulare Analyse der genomischen Struktur und molekulargenetische Untersuchung von Genkandidaten

xxx

Please always quote using this URN: urn:nbn:de:bvb:20-opus-25170
  • Mit über 24.000 Arten sind etwa die Hälfte aller heute lebenden Wirbeltiere Fische. Im Gegensatz zu Vögeln oder Säugetieren weisen Fische eine erstaunliche Vielfalt und Variabilität der Geschlechtsbestimmungsmechanismen auf. Sämtliche Formen von Zwittrigkeit sowie umweltbedingte und genetische Geschlechtsbestimmung sind beschrieben worden. Die molekularen Grundlagen der genetischen Geschlechtsbestimmung bei Fischen sind jedoch weitgehend unbekannt. Für einige Fischarten, wie etwa der Zebrafisch, die beliebte Modellorganismen zur UntersuchungMit über 24.000 Arten sind etwa die Hälfte aller heute lebenden Wirbeltiere Fische. Im Gegensatz zu Vögeln oder Säugetieren weisen Fische eine erstaunliche Vielfalt und Variabilität der Geschlechtsbestimmungsmechanismen auf. Sämtliche Formen von Zwittrigkeit sowie umweltbedingte und genetische Geschlechtsbestimmung sind beschrieben worden. Die molekularen Grundlagen der genetischen Geschlechtsbestimmung bei Fischen sind jedoch weitgehend unbekannt. Für einige Fischarten, wie etwa der Zebrafisch, die beliebte Modellorganismen zur Untersuchung z.B. von Krankheiten sind, liegen bereits sequenzierte Genome vor. Dennoch sind diese Modellorganismen aufgrund bisher nicht identifizierbarer Geschlechtschromosomen oder fehlender geschlechtsgebundener molekularer Marker als Modellorganismen zur Untersuchung der genetischen Geschlechtsbestimmung und der Evolution der Geschlechtschromosomen ungeeignet. Bei Stichling und Medaka, ebenfalls Fische mit vollständig sequenzierten Genomen, konnte hingegen die geschlechtsbestimmende Region identifiziert werden. Im Medaka ist bereits das geschlechtsbestimmende Gen identifiziert worden, eine Y-spezifische Kopie des Gens dmrt1. Dmrt1bY konnte aber lediglich in einigen Medaka Arten nachgewiesen werden und stellt somit keinesfalls das universelle geschlechtsbestimmende Gen der Fische dar. Da die geschlechtsbestimmenden Regionen von Medaka und Stichling evolutionär gesehen relativ jung und linienspezifisch sind, spiegeln sie nur begrenzt den evolutionären Verlauf der Entstehung von Geschlechtschromosomen und Geschlechtsbestimmungsmechanismen wider. Der Platyfisch Xiphophorus maculatus ist ein hervorragender Modellorganismus zur Untersuchung der Geschlechtsbestimmung und Evolution von Geschlechtschromosomen. Er wird seit Ende 1920 zur Untersuchung von malignen Melanomen verwendet. Interspezifische Hybride bilden durch die kreuzungsbedingte Aktivierung eines Tumorlocus erbliche Melanome aus. Der Tumorlocus konnte bereits molekular identifiziert werden. Er entspricht dem Onkogen Xmrk, das durch eine Xiphophorus-spezifische Duplikation des Protoonkogens egfrb gebildet worden ist. Onkogen und Protoonkogen, die beide für epidermale Wachstumsfaktorrezeptoren codieren, befinden sich in der Subtelomerregion auf den Geschlechtschromosomen des Platyfisches. Sie flankieren die etwa 1 Mb große geschlechtsbestimmende Region. Neben dem geschlechtsbestimmenden Locus sind verschiedene pigmentzelldefinierende Loci in dieser Region vorzufinden. Die Geschlechtschromosomen X und Y des Platyfisches sind sehr homolog, lassen sich aber sowohl cytogenetisch als auch genetisch gut voneinander unterscheiden. Zur Untersuchung der genetischen Struktur der geschlechtsbestimmenden Region und zur Identifizierung des geschlechtsbestimmenden Gens mittels positioneller Klonierung, wurde eine artifizielle Bakterienchromosom-(BAC) Bibliothek aus männlichen Platyfischen (Genotyp XY) angelegt. Onkogen und Protoonkogen sowie verschiedene andere X- und Y-chromosomale molekulare Marker wurden als Startpunkte für „Chromosomen-Walking“ und den Aufbau von X- und Y-chromosomalen artifizielle Bakterienchromosom (BAC)-Contigs verwendet. Hauptaufgabe meiner Doktorarbeit war die Erweiterung und physikalische Verknüpfung verschiedener X- und Y-chromosomaler Contigs mittels molekularbiologischer und cytogenetischer Methoden sowie die Identifizierung von Genen mittels Bioinformatik und funktioneller Analyse. Bis zum jetzigen Zeitpunkt decken die BAC-Contigs 3,1 Mb auf dem Y-Chromosom und 3,8 Mb auf dem X-Chromosom in der geschlechtsbestimmenden Region ab. Sie stellen mitunter die größten geschlechtschromosomalen Contigs bei Fischen dar. Die X- und Y-chromosomalen Contigs werden derzeit in Kollaboration mit dem Sequenzierungszentrum Genoscope in Frankreich komplett durchsequenziert. Erste Sequenzanalysen weisen auf eine molekulare Differenzierung zwischen den X- und Y-Geschlechtschromosomen in der geschlechtsbestimmenden Region hin. Es konnten ein duplizierter Bereich auf dem Y Chromosom sowie eine Inversion in der geschlechtsbestimmenden Region identifiziert werden. Nichthomologe Rekombinationsereignisse zwischen transponierbaren Elementen und wiederholende Sequenzen sind mutmaßlich an dieser molekularen Umordnung beteiligt. Solche transponierbaren und sich wiederholenden Elemente akkumulieren in der geschlechtsbestimmenden Region und erschwerten auch maßgeblich Aufbau und Ausweitung der geschlechtschromosomalen Contigs. Während die meisten Elemente auf beiden Geschlechtschromosomen zu finden sind, konnten auch Y-spezifische Kopien nachgewiesen werden, wie beispielsweise der endogene Retrovirus foamy. Eine Reihe von Genkandidaten wurden in der geschlechtsbestimmenden Region identifiziert. Einige stellen aussichtsreiche Kandidaten für den geschlechtsbestimmenden Locus dar. So ist das Gen fredi, das für einen putativen Transkriptionsfaktor mit Helix-Turn-Helix Motiv codiert, im Hoden stark exprimiert. Verschiedene fredi Kopien sind auf dem X und Y Chromosom in der geschlechtsbestimmenden Region identifiziert worden. Interessanterweise ist die codierende Sequenz der X-chromosomalen fredi Kopien durch ein transponierbares Element zerstört. Die Y-chromosomalen Kopien sind hingegen scheinbar nicht beeinträchtigt. Zwei weitere miteinander verwandter Genkandidaten namens fah und tan, die bislang für Genprodukte mit unbekannten Eigenschaften codieren, liegen nebeneinander in der geschlechtsbestimmenden Region vor. Expressionsanalysen beider Gene weisen eine spezifische Expression im Ovar und zwar in der vegetativen Hemisphäre der Oocyten auf. Orthologe Gene wurden in Medaka und Zebrafisch identifiziert und kloniert. Expressionsanalysen in Medaka zeigten eine Ovar-spezifische Transkription wie in Xiphophorus, während im Zebrafisch fah und tan ubiquitär exprimiert sind. Interessanterweise konnte im Platyfisch eine Spleißvariante von fah identifiziert werden, die auch im Hoden exprimiert ist. Dies macht fah zu einem vielversprechenden Kandidaten für den geschlechtsbestimmenden Locus. Die genomischen Regionen, in der fah und tan bei anderen Fischarten wie Medaka, Zebrafisch und Kugelfisch identifiziert wurden, zeigen hohe Syntenie zur geschlechtsbestimmenden Region des Platyfisches und könnten auch bei diesen Fischarten eine Rolle in der Geschlechtsbestimmung spielen. Ein einziges Gen, das mit fah und tan verwandt ist, konnte auch in Maus, Huhn und Frosch nachgewiesen werden. Interessanterweise konnte auf dem menschlichen X-Chromosom eine mit Stoppcodons durchzogene, zu fah/tan homologe Pseudogene Sequenz identifiziert werden. Diese Syntenie zwischen Geschlechtschromosomen von Fischen und Säugern könnte auf eine evolutionär sehr alte geschlechtsbestimmende Region der Wirbeltiere hindeuten. Zusammenfassend hat diese Arbeit neben neuen Erkenntnissen über die Evolution der Geschlechtschromosomen bei Fischen verschiedene Genkandidaten für den geschlechtsbestimmenden Locus geliefert, die nun auch funktionell analysiert werden müssen.show moreshow less
  • Fishes are the species richest vertebrate group. Contrary to the situation known form birds and mammals sex determination in fish is extremely variable. All possible forms of hermaphroditism, environmental and genetic sex determination have been described. The molecular basis of genetic sex determination remains extensive unknown so far. Famous fish models such as the zebrafish are useless to investigate sex chromosome evolution since sex chromosomes are not recognizable, and no sex-linked genetic loci or molecular markers have been identified.Fishes are the species richest vertebrate group. Contrary to the situation known form birds and mammals sex determination in fish is extremely variable. All possible forms of hermaphroditism, environmental and genetic sex determination have been described. The molecular basis of genetic sex determination remains extensive unknown so far. Famous fish models such as the zebrafish are useless to investigate sex chromosome evolution since sex chromosomes are not recognizable, and no sex-linked genetic loci or molecular markers have been identified. In the pufferfish Tetraodon nothing is known about the sex determination. However, in Medaka and three-spine stickleback, also fishes with sequenced genomes, the sex determining regions have been identified and the master sex determining gene in Medaka has been already identified. It displays a Y-specific copy of the gene dmrt1. Dmrt1bY has been detected only in some Medaka-species and therefore could not represent the universal master sex-determining gene is fish. The sex-determining regions of Medaka and stickleback are, from the evolutionary point of view, relatively young and lineage-specific and do not reflect the evolution of sex chromosome and sex chromosome differentiation. The platyfish Xiphophorus maculatus is an excellent model organism to investigate vertebrate’s sex chromosome evolution and sex determination. The sex chromosomes (XY) of the platyfish are poorly differentiated but genetically well-defined and the sex-determining (SD) region, subtelomeric on the sex chromosomes is delimited by markers identified at the molecular level. Beside the master sex-determining locus several other loci involved in pigmentation and cancer formation are arranged in this region. The molecular nature of these different loci is unknown so far. Using the molecular markers, Xmrk an oncogene and its protooncogenic ancestor egfrb (both encoding for epidermal like growth factor receptor tyrosine kinases) as starting point for chromosome walking, bacterial artificial chromosome (BAC) -contigs have been assembled covering megabases on the X and the Y chromosome. These contigs are going to be sequenced to near completion in collaboration with GENOSCOPE, Paris, France and Muséum National d´Hitoire Naturelle, Paris, France. Primary sequence analysis revealed initial molecular differentiation between the X and the Y chromosomes in the sex-determining region. Differential duplications, deletions, inversions and transpositions have been identified. The high number of transposable and repeated elements and endogenous retroviruses identified in the sex-determining region might play a role in rearrangements caused by non-homologous recombination between elements. Besides, genes from the sex-determining region have been affected by transposable elements. For example the X chromosomal copies of the gene candidate fredi (encoding for a DNA binding protein with helix turn helix domain) have been disrupted by the transposable element MIToy, (a miniature inverted repeat transposable element, MITE) whereas the Y chromosomal copies remain apparently functional. Most transposable elements and endogenous retroviruses identified in the sex-determining region are present on both sex chromosomes. However, some Y-specific sequences have been identified, for example a Y-specific cluster of the LTR-like repeat xir and one copy of an endogenous retrovirus called fishmy similar to the foamy virus of mammals. About 40 genes have been identified so far by sequence analysis, some of them having no known functions in other organisms. Several genes show a sexual dimorphic expression in gonads and are candidates for the sex-determining locus. The linked gene candidates fah (Fahrrad) and tan (Tandem) encode for an unknown protein-product. Both genes are preferentially expressed in the ovary, more precisely in the vegetal hemisphere of the oocytes. Orthologues sequences to fah and tan have been identified and cloned in Medaka and zebrafish. The expression pattern in Medaka is similar to Xiphophorus, whereas zebrafish fah and tan are rather ubiquitously expressed. Interestingly an isoform of fah with an alternative start codon has been identified in Xiphophorus maculatus being preferentially expressed in ovary and also in testis, making fah to a promising gene candidate for the master sex-determining locus. Comparative genomics distinguished regions in Medaka, Tetraodon and zebrafish highly syntenic to the sex- determining region of Xiphophorus maculatus. These regions might be involved in sex determination in Tetraodon and zebrafish. Fah and tan have been identified in frog, dog and chicken but only as single gene called velo. Therefore fah and tan seems to have arisen by old fish specific gene duplication independent of the whole genome duplication in fish. An orthologues sequence to velo and fah/tan, piled up with multiple stop codons in the open reading frame, has been identified on human X chromosome. This result reminds of traces of an ancestral sex-determining region present in vertebrate genomes 450 million years ago. This work gains novel insights in sex chromosome evolution in fish. Two gene candidates have been identified being promising gene candidates for the master sex determining locus in Xiphophorus maculatus.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Christina Schultheis
URN:urn:nbn:de:bvb:20-opus-25170
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Biologie
Faculties:Fakultät für Biologie / Theodor-Boveri-Institut für Biowissenschaften
Date of final exam:2007/11/29
Language:German
Year of Completion:2007
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
GND Keyword:Geschlechtsbestimmung
Tag:Geschlechtsbestimmung
sex determination
Release Date:2007/12/03
Advisor:Prof. Dr. Manfred Schartl