• search hit 9 of 32
Back to Result List

Genome Expression Pathway Analysis Tool - Analyse und Visualisierung von Microarray Genexpressionsdaten unter genomischen, proteomischen und metabolischen Gesichtspunkten

Genom Expression Pathway Analysis Tool - Analysis and visualization of microarray gene expression data under genomic, proteomic and metabolic context

Please always quote using this URN: urn:nbn:de:bvb:20-opus-25392
  • Die Messung der Genexpression ist für viele Bereiche der Biologie und Medizin wichtig geworden und unterstützt Studien über Behandlung, Krankheiten und Entwicklungsstadien. Microarrays können verwendet werden, um die Expression von tausenden mRNA-Molekülen gleichzeitig zu messen und ermöglichen so einen Einblick und einen Vergleich der verschiedenen zellulären Bedingungen. Die Daten, die durch Microarray-Experimente gewonnen werden, sind hochdimensional und verrauscht, eine Interpretation der Daten ist deswegen nicht einfach. Obwohl ProgrammeDie Messung der Genexpression ist für viele Bereiche der Biologie und Medizin wichtig geworden und unterstützt Studien über Behandlung, Krankheiten und Entwicklungsstadien. Microarrays können verwendet werden, um die Expression von tausenden mRNA-Molekülen gleichzeitig zu messen und ermöglichen so einen Einblick und einen Vergleich der verschiedenen zellulären Bedingungen. Die Daten, die durch Microarray-Experimente gewonnen werden, sind hochdimensional und verrauscht, eine Interpretation der Daten ist deswegen nicht einfach. Obwohl Programme für die statistische Auswertung von Microarraydaten existieren, fehlt vielen eine Integration der Analyseergebnisse mit einer automatischen Interpretationsmöglichkeit. In dieser Arbeit wurde GEPAT, Genome Expression Pathway Analysis Tool, entwickelt, das eine Analyse der Genexpression unter dem Gesichtspunkten der Genomik, Proteomik und Metabolik ermöglicht. GEPAT integriert statistische Methoden zum Datenimport und -analyse mit biologischer Interpretation für Genmengen oder einzelne Gene, die auf dem Microarray gemessen werden. Verschiedene Typen von Oligonukleotid- und cDNAMicroarrays können importiert werden, unterschiedliche Normalisierungsmethoden können auf diese Daten angewandt werden, anschließend wird eine Datenannotation durchgeführt. Nach dem Import können mit GEPAT verschiedene statische Datenanalysemethoden wie hierarchisches, k-means und PCA-Clustern, ein auf einem linearen Modell basierender t-Test, oder ein Vergleich chromosomaler Profile durchgeführt werden. Die Ergebnisse der Analysen können auf Häufungen biologischer Begriffe und Vorkommen in Stoffwechselwegen oder Interaktionsnetzwerken untersucht werden. Verschiedene biologische Datenbanken wurden integriert, um zu jeder Gensonde auf dem Array Informationen zur Verfügung stellen zu können. GEPAT bietet keinen linearen Arbeitsablauf, sondern erlaubt die Benutzung von beliebigen Teilmengen von Genen oder biologischen Proben als Startpunkt einer neuen Analyse oder Interpretation. Dabei verlässt es sich auf bewährte Datenanalyse-Pakete, bietet einen modularen Ansatz zur einfachen Erweiterung und kann auf einem verteilten Computernetzwerk installiert werden, um eine große Zahl an Benutzern zu unterstützen. Es ist unter der LGPL Open-Source Lizenz frei verfügbar und kann unter http://gepat.sourceforge.net heruntergeladen werden.show moreshow less
  • The measurement of gene expression data is relevant to many areas of biology and medicine, in the study of treatments, diseases, and developmental stages. Microarrays can be used to measure the expression level of thousands of mRNAs at the same time, allowing insight into or comparison of different cellular conditions. The data derived out of microarray experiments is highly dimensional and noisy, and interpretation of the results can get tricky. Although programs for the statistical analysis of microarray data exist, most of them lack anThe measurement of gene expression data is relevant to many areas of biology and medicine, in the study of treatments, diseases, and developmental stages. Microarrays can be used to measure the expression level of thousands of mRNAs at the same time, allowing insight into or comparison of different cellular conditions. The data derived out of microarray experiments is highly dimensional and noisy, and interpretation of the results can get tricky. Although programs for the statistical analysis of microarray data exist, most of them lack an integration of analysis results and biological interpretation. In this work GEPAT, Genome Expression Pathway Analysis Tool, was developed, offering an analysis of gene expression data under genomic, proteomic and metabolic context. GEPAT integrates statistical methods for data import and data analysis together with an biological interpretation for subset of genes or single genes measured on the chip. GEPAT imports various types of oligonucleotide and cDNA array data formats. Different normalization methods can be applied to the data, afterwards data annotation is performed. After import, GEPAT offers various statistical data analysis methods, as hierarchical, k-means and PCA clustering, a linear model based t-Test or chromosomal profile comparison. The results of the analysis can be interpreted by enrichment of biological terms, pathway analysis or interaction networks. Different biological databases are included, to give various informations for each probe on the chip. GEPAT offers no linear work flow, but allows the usage of any subset of probes and samples as start for a new data analysis or interpretation. GEPAT relies on established data analysis packages, offers a modular approach for an easy extension, and can be run on a computer grid to allow a large number of users. It is freely available under the LGPL open source license for academic and commercial users at http://gepat.sourceforge.net.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Markus Weniger
URN:urn:nbn:de:bvb:20-opus-25392
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Biologie
Faculties:Fakultät für Biologie / Theodor-Boveri-Institut für Biowissenschaften
Date of final exam:2007/12/12
Language:German
Year of Completion:2007
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
GND Keyword:Microarray; Genexpression; Datenanalyse; Explorative Datenanalyse
Tag:data analysis; explorative data analysis; gene expression; microarray
Release Date:2007/12/14
Advisor:Prof. Dr. Jörg Schultz