• search hit 12 of 52
Back to Result List

Relationships of peripheral IGF-1, VEGF and BDNF levels to exercise-related changes in memory, hippocampal perfusion and volumes in older adults

Please always quote using this URN: urn:nbn:de:bvb:20-opus-189219
  • Animal models point towards a key role of brain-derived neurotrophic factor (BDNF), insulin-like growth factor-I (IGF-I) and vascular endothelial growth factor (VEGF) in mediating exercise-induced structural and functional changes in the hippocampus. Recently, also platelet derived growth factor-C (PDGF-C) has been shown to promote blood vessel growth and neuronal survival. Moreover, reductions of these neurotrophic and angiogenic factors in old age have been related to hippocampal atrophy, decreased vascularization and cognitive decline. In aAnimal models point towards a key role of brain-derived neurotrophic factor (BDNF), insulin-like growth factor-I (IGF-I) and vascular endothelial growth factor (VEGF) in mediating exercise-induced structural and functional changes in the hippocampus. Recently, also platelet derived growth factor-C (PDGF-C) has been shown to promote blood vessel growth and neuronal survival. Moreover, reductions of these neurotrophic and angiogenic factors in old age have been related to hippocampal atrophy, decreased vascularization and cognitive decline. In a 3-month aerobic exercise study, forty healthy older humans (60 to 77 years) were pseudo-randomly assigned to either an aerobic exercise group (indoor treadmill, n = 21) or to a control group (indoor progressive-muscle relaxation/stretching, n = 19). As reported recently, we found evidence for fitness-related perfusion changes of the aged human hippocampus that were closely linked to changes in episodic memory function. Here, we test whether peripheral levels of BDNF, IGF-I, VEGF or PDGF-C are related to changes in hippocampal blood flow, volume and memory performance. Growth factor levels were not significantly affected by exercise, and their changes were not related to changes in fitness or perfusion. However, changes in IGF-I levels were positively correlated with hippocampal volume changes (derived by manual volumetry and voxel-based morphometry) and late verbal recall performance, a relationship that seemed to be independent of fitness, perfusion or their changes over time. These preliminary findings link IGF-I levels to hippocampal volume changes and putatively hippocampus-dependent memory changes that seem to occur over time independently of exercise. We discuss methodological shortcomings of our study and potential differences in the temporal dynamics of how IGF-1, VEGF and BDNF may be affected by exercise and to what extent these differences may have led to the negative findings reported here.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Anne Maass, Sandra Düzel, Tanja Brigadski, Monique Goerke, Andreas Becke, Uwe Sobieray, Katja Neumann, Martin Lövdén, Ulman Lindenberger, Lars Bäckman, Rüdiger Braun-Dullaeus, Dörte Ahrens, Hans-Jochen Heinze, Notger G. Müller, Volkmar Lessmann, Michael Sendtner, Emrah Düzel
URN:urn:nbn:de:bvb:20-opus-189219
Document Type:Journal article
Faculties:Medizinische Fakultät / Institut für Klinische Neurobiologie
Language:English
Parent Title (English):NeuroImage
Year of Completion:2016
Volume:131
Pagenumber:142-154
Source:NeuroImage (2016) 131, S. 142-154. https://doi.org/10.1016/j.neuroimage.2015.10.084
DOI:https://doi.org/10.1016/j.neuroimage.2015.10.084
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Tag:Aging; Exercise; Hippocampus; Neurotrophic factors; Vascular plasticity
Release Date:2020/12/03
Licence (German):License LogoCC BY-NC-ND: Creative-Commons-Lizenz: Namensnennung, Nicht kommerziell, Keine Bearbeitungen 4.0 International