• search hit 182 of 1509
Back to Result List

Individual and family recognition in subsocial arthropods, in particular in the desert isopod Hemilepistus reaumuri

Please always quote using this URN: urn:nbn:de:bvb:20-opus-33957
  • Individual recogmtlon in the non-eusocial arthropods is, according to our present knowledge, predominantly found in the frame of permanent or temporary monogamy. In some cases, e. g. in stomatopods and possibly other marine crustaceans too, individual recognition may serve to allow identification of (i) individuals within dominance hierarchies or (ii) neighbours in territorial species thus helping to avoid the repetition of unnecessary and costly fights. Kin recognition is experimentally proven only in some isopod species (genera HemilepistusIndividual recogmtlon in the non-eusocial arthropods is, according to our present knowledge, predominantly found in the frame of permanent or temporary monogamy. In some cases, e. g. in stomatopods and possibly other marine crustaceans too, individual recognition may serve to allow identification of (i) individuals within dominance hierarchies or (ii) neighbours in territorial species thus helping to avoid the repetition of unnecessary and costly fights. Kin recognition is experimentally proven only in some isopod species (genera Hemilepistus and Porcel/io) and in the primitive cockroach (termite?) Cryptocercus. The «signatures» or «discriminators» used in the arthropods are chemical. It is assumed that the identifying substances are mainly genetically determined and in this paper I shall discuss possible evolutionary origins. The main part of this account is devoted to the presentation of some aspects of the highly developed individual and kin identification and recognition system in the desert isopod Hemilepistus reaumuri - a pure monogamous species in which pairs together with their progeny form strictly exclusive family units. Amongst other things problems of (i) mate choice, (ii) learning to recognize a partner, (iii) avoiding the un adaptive familiarization with aliens are treated. Monogamy under present conditions is for both sexes the only suitable way of maximizing reproductive success; an extremely strong selection pressure must act against every attempt to abandon monogamy under the given ecological conditions. The family «badges» which are certainly always blends of different discriminator substances are extremely variable. This variability is mainly due to genetical differences and is not environmentally caused. It is to be expected that intra-family variabiliry exists in respect of the production of discriminator substances. Since the common badge of a family is the result of exchanging and mixing individual substances, and since the chemical nature of these discriminators requires direct body contacts in order to acquire those substances which an individual does not produce itself, problems must arise with molting. These difficulties do indeed exist and they are aggravated by the fact that individuals may produce substances which do not show up in the common family badge. An efficient learning capability on the one hand and the use of inhibiting properties of newly molted isopods help to solve these problems. In the final discussion three questions are posed and - partly at least - answered; (i) why are families so strictly exclusive, (ii) how many discriminator substances have to be produced to provide a variability allowing families to remain exclusive under extreme conditions of very high population densities, (iii) what is the structure of the family badge and what does an individual have to learn apart from the badge in order not to mistake a family member for an alien or vice versa.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Karl Eduard Linsenmair
URN:urn:nbn:de:bvb:20-opus-33957
Document Type:Journal article
Faculties:Fakultät für Biologie / Theodor-Boveri-Institut für Biowissenschaften
Language:English
Year of Completion:1985
Source:In: Fortschritte der Zoologie (1985) 31, 411-436.
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 59 Tiere (Zoologie) / 590 Tiere (Zoologie)
Release Date:2009/09/06