• search hit 4 of 420
Back to Result List

The Ypk1 protein kinase signaling pathway is rewired and not essential for viability in \(Candida\) \(albicans\)

Please always quote using this URN: urn:nbn:de:bvb:20-opus-350076
  • Abstract Protein kinases are central components of almost all signaling pathways that control cellular activities. In the model organism Saccharomyces cerevisiae, the paralogous protein kinases Ypk1 and Ypk2, which control membrane lipid homeostasis, are essential for viability, and previous studies strongly indicated that this is also the case for their single ortholog Ypk1 in the pathogenic yeast Candida albicans. Here, using FLP-mediated inducible gene deletion, we reveal that C. albicans ypk1Δ mutants are viable but slow-growing,Abstract Protein kinases are central components of almost all signaling pathways that control cellular activities. In the model organism Saccharomyces cerevisiae, the paralogous protein kinases Ypk1 and Ypk2, which control membrane lipid homeostasis, are essential for viability, and previous studies strongly indicated that this is also the case for their single ortholog Ypk1 in the pathogenic yeast Candida albicans. Here, using FLP-mediated inducible gene deletion, we reveal that C. albicans ypk1Δ mutants are viable but slow-growing, explaining prior failures to obtain null mutants. Phenotypic analyses of the mutants showed that the functions of Ypk1 in regulating sphingolipid biosynthesis and cell membrane lipid asymmetry are conserved, but the consequences of YPK1 deletion are milder than in S. cerevisiae. Mutational studies demonstrated that the highly conserved PDK1 phosphorylation site T548 in its activation loop is essential for Ypk1 function, whereas the TORC2 phosphorylation sites S687 and T705 at the C-terminus are important for Ypk1-dependent resistance to membrane stress. Unexpectedly, Pkh1, the single C. albicans orthologue of Pkh1/Pkh2, which mediate Ypk1 phosphorylation at the PDK1 site in S. cerevisiae, was not required for normal growth of C. albicans under nonstressed conditions, and Ypk1 phosphorylation at T548 was only slightly reduced in pkh1Δ mutants. We found that another protein kinase, Pkh3, whose ortholog in S. cerevisiae cannot substitute Pkh1/2, acts redundantly with Pkh1 to activate Ypk1 in C. albicans. No phenotypic effects were observed in cells lacking Pkh3 alone, but pkh1Δ pkh3Δ double mutants had a severe growth defect and Ypk1 phosphorylation at T548 was completely abolished. These results establish that Ypk1 is not essential for viability in C. albicans and that, despite its generally conserved function, the Ypk1 signaling pathway is rewired in this pathogenic yeast and includes a novel upstream kinase to activate Ypk1 by phosphorylation at the PDK1 site. Author summary Protein kinases are key components of cellular signaling pathways, and elucidating the specific roles of individual kinases is important to understand how organisms adapt to changes in their environment. The protein kinase Ypk1 is highly conserved in eukaryotic organisms and crucial for the maintenance of cell membrane homeostasis. It was previously thought that Ypk1 is essential for viability in the pathogenic yeast Candida albicans, as in the model organism Saccharomyces cerevisiae. Here, by using forced, inducible gene deletion, we reveal that C. albicans mutants lacking Ypk1 are viable but have a strong growth defect. The phenotypes of the mutants indicate that the known functions of Ypk1 are conserved in C. albicans, but loss of this kinase has less severe consequences than in S. cerevisiae. We also unravel the puzzling previous observation that C. albicans mutants lacking the Ypk1-activating kinase Pkh1, which is essential in S. cerevisiae, have no obvious growth defects. We show that the protein kinase Pkh3, which has not previously been implicated in the Ypk1 signaling pathway, can substitute Pkh1 and activate Ypk1 in C. albicans. These findings provide novel insights into this conserved signaling pathway and how it is rewired in a human-pathogenic fungus.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Bernardo Ramírez-ZavalaORCiD, Ines Krüger, Andreas Wollner, Sonja Schwanfelder, Joachim MorschhäuserORCiD
URN:urn:nbn:de:bvb:20-opus-350076
Document Type:Journal article
Faculties:Medizinische Fakultät / Institut für Molekulare Infektionsbiologie
Language:English
Parent Title (English):PLoS Genetics
Year of Completion:2023
Volume:19
Issue:8
Article Number:e1010890
Source:PLoS Genetics (2023) 19:8, e1010890. DOI: 10.1371/journal.pgen.1010890
DOI:https://doi.org/10.1371/journal.pgen.1010890
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Tag:Candida albicans; Ypk1; protein kinase; signaling pathway
Release Date:2024/04/18
Licence (German):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung 4.0 International