• search hit 5 of 14
Back to Result List

Visualisierung und Manipulation neuronaler Aktivitäten im Gehirn von Drosophila melanogaster

Visualization and manipulation of neuronal activity in the brain of Drosophila melanogaster

Please always quote using this URN: urn:nbn:de:bvb:20-opus-35589
  • In dieser Arbeit wurden zwei Techniken zur Analyse der Funktion diverser Neuronen in Drosophila melanogaster angewendet. Im ersten Teil wurde mittels in-vivo Calcium Imaging Technik unter Verwendung des Calciumsensors Cameleon neuronale Aktivität entlang des olfaktorischen Signalweges registriert. Hierbei wurde die neuronale Repräsentation der Duftidentität und der Duftintensität untersucht. In Bezug auf diese Fragestellung wurde die Datenverarbeitung und Datenanalyse weiterentwickelt und standardisiert. Die Experimente führten zu dem Ergebnis,In dieser Arbeit wurden zwei Techniken zur Analyse der Funktion diverser Neuronen in Drosophila melanogaster angewendet. Im ersten Teil wurde mittels in-vivo Calcium Imaging Technik unter Verwendung des Calciumsensors Cameleon neuronale Aktivität entlang des olfaktorischen Signalweges registriert. Hierbei wurde die neuronale Repräsentation der Duftidentität und der Duftintensität untersucht. In Bezug auf diese Fragestellung wurde die Datenverarbeitung und Datenanalyse weiterentwickelt und standardisiert. Die Experimente führten zu dem Ergebnis, dass duftspezifische Aktivitätsmuster auf der Ebene des Antennallobus sehr gut unterscheidbar sind. Manche Aktivitätsmuster der präsentierten Düfte zeigten interessanterweise einen hohen Ähnlichkeitsgrad, wohingegen andere unähnlich waren. In höheren Gehirnzentren wie den Orten der terminalen Aborisationen der Projektionsneurone oder den Pilzkörper Kenyonzellen liegt eine starke Variabilität der duftevozierten Aktivitätsmuster vor, was generelle Interpretationen unmöglich macht und höchstens Vergleiche innerhalb eines Individuums zulässt. Des Weiteren konnte gezeigt werden, dass die Calciumsignale in den Rezeptorneuronen sowie prä- und postsynaptisch in den Projektionsneuronen bei Erhöhung der Konzentration der verschiedenen präsentierten Düfte über einen Bereich von mindestens drei Größenordnungen ansteigen. In den Kenyonzellen des Pilzkörper-Calyx und der Pilzkörper-Loben ist diese Konzentrationsabhängigkeit weniger deutlich ausgeprägt und im Falle der Loben nur für bestimmte Düfte detektierbar. Eine Bestätigung des postulierten „sparsed code“ der Duftpräsentation in den Pilzkörpern konnte in dieser Arbeit nicht erbracht werden, was möglicherweise daran liegt, dass eine Einzelzellauflösung mit der verwendeten Technik nicht erreicht werden kann. Im zweiten Teil dieser Arbeit sollte durch die Nutzung des lichtabhängigen Kationenkanals Channelrhodopsin-2 der Frage nachgegangen werden, ob bestimmte modulatorische Neurone die verstärkenden Eigenschaften eines bestrafenden oder belohnenden Stimulus vermitteln. Die lichtinduzierte Aktivierung von Channelrhodopsin-2 exprimierenden dopaminergen Neuronen als Ersatz für einen aversiven Reiz führte bei einer olfaktorischen Konditionierung bei Larven zur Bildung eines aversiven assoziativen Gedächtnisses. Im Gegensatz dazu induzierte die Aktivierung von Channelrhodopsin-2 in oktopaminergen/tyraminergen Neuronen als Ersatz für einen appetitiven Reiz ein appetitives assoziatives Gedächtnis. Diese Ergebnisse zeigen, dass dopaminerge Neurone bei Larven aversives Duftlernen, oktopaminerge/tyraminerge Neurone dagegen appetitives Duftlernen induzieren.show moreshow less
  • In this work two different techniques were used to determine the functions of various neurons in the brain of Drosophila melanogaster. First, by using in vivo calcium imaging and the calcium indicator cameleon odor-evoked neuronal activity was monitored along the olfactory pathway. How are odor identity and odor intensity represented in the fruit fly brain? To investigate this question we improved and standardized the data processing and data analysis. The experiments reveal that calcium activity patterns elicited by different odors areIn this work two different techniques were used to determine the functions of various neurons in the brain of Drosophila melanogaster. First, by using in vivo calcium imaging and the calcium indicator cameleon odor-evoked neuronal activity was monitored along the olfactory pathway. How are odor identity and odor intensity represented in the fruit fly brain? To investigate this question we improved and standardized the data processing and data analysis. The experiments reveal that calcium activity patterns elicited by different odors are distinguishable in the antennal lobe. Interestingly, the patterns evoked by some odors show a high degree of similarity whereas those of other odors show less similarity in this analyzed neuropile. In higher brain centers like the region of the terminal aborizations of the projection neurons and the mushroom body Kenyon cells the odor evoked activity patterns are highly variable allowing no general interpretations but only comparison of patterns within fruit flies. Furthermore this work demonstrates an odor concentration dependent activity in the olfactory receptor neurons as well as pre- and postsynaptically in the projection neurons. In the Kenyon cells of the mushroom body calyx this concentration dependency is less clear and in the mushroom body lobes it seems that there is a concentration dependency only for specific odors. So far we have no evidence for the postulated so called “sparsed code” of odor representation in the mushroom body which might be due to limited resolution of the technique used in this work. In the second part of my work we used the light-dependent cation channel channelrhodopsin-2 and asked the question whether specific modulatory neurons mediate the reinforcing properties of a rewarding or punishing stimulus. Light-induced activation of dopaminergic neurons expressing channelrhodopsin-2 caused aversive associative memory formation in an aversiv olfactory conditioning paradigm for Drosophila larvae. Conversely, the artificial activation of octopaminergic/tyraminergic neurons by channelrhodopsin-2 induced appetitive associative memory. The conclusion is that dopaminergic neurons trigger aversive odor learning whereas octopaminergic/tyraminergic neurons trigger appetitive odor learning.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Thomas Völler
URN:urn:nbn:de:bvb:20-opus-35589
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Biologie
Faculties:Fakultät für Biologie / Theodor-Boveri-Institut für Biowissenschaften
Date of final exam:2009/04/22
Language:German
Year of Completion:2009
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
GND Keyword:Taufliege; Calcium; Calciumkonzentration; Calcium-bindende Proteine; Klassische Konditionierung
Tag:Cameleon; Channelrhodopsin; Drosophila; Light-activation; in-vivo Calcium-Imaging
Release Date:2009/04/23
Advisor:Prof. Dr. Erich Buchner