• search hit 5 of 26
Back to Result List

Characterization of the mechanisms of two-component signal transduction involved in motility and chemotaxis of Helicobacter pylori

Untersuchungen zur Zweikomponenten- Signaltransduktion bei der Motilität und Chemotaxis von Helicobacter pylori

Please always quote using this URN: urn:nbn:de:bvb:20-opus-15698
  • Flagellar motility and chemotaxis are essential virulence traits required for the ability of Helicobacter pylori to colonize the gastric mucosa. The flagellar regulatory network and the complex chemotaxis system of H. pylori are fundamentally different from other bacteria, despite many similarities. In H. pylori expression of the flagella is controlled by a complex regulatory cascade involving the two-component system FlgR-HP244, the sigma factors 54 and 28 and the anti-sigma 28 factor FlgM. Thus far, the input signal for histidine kinaseFlagellar motility and chemotaxis are essential virulence traits required for the ability of Helicobacter pylori to colonize the gastric mucosa. The flagellar regulatory network and the complex chemotaxis system of H. pylori are fundamentally different from other bacteria, despite many similarities. In H. pylori expression of the flagella is controlled by a complex regulatory cascade involving the two-component system FlgR-HP244, the sigma factors 54 and 28 and the anti-sigma 28 factor FlgM. Thus far, the input signal for histidine kinase HP244, which activates the transcriptional regulator FlgR, which triggers sigma factor 54-dependent transcription of the flagellar class 2 genes, is not known. Based on a yeast two-hybrid screen a highly significant protein-protein interaction between the H. pylori protein HP137 and both the histidine kinase HP244 and the flagellar hook protein HP908 (FlgE´) has been reported recently (Rain et al., 2001). So far, no function could be assigned to HP137. Interestingly, the interaction between HP137 and histidine kinase HP244 was observed in the characteristic block N sequence motif of the C-terminal ATP-binding kinase domain. In this work a potential role of HP137 in a feedback regulatory mechanism controlling the activity of histidine kinase HP244 in the flagellar regulation of H. pylori was investigated. Although the substitution of the gene encoding HP137 by a kanamycin cassette resulted in non-motile bacteria, the failure to restore motility by the reintroduction of hp137 in cis into the mutant strain, and the observation that HP137 has no significant effect on the activity of histidine kinase HP244 in vitro indicated that HP137 is not directly involved in flagellar regulation. Therefore, it was demonstrated that HP137 does not participate in the regulation of flagellar gene expression, neither in H. pylori nor in the closely related bacterium C. jejuni. Chemotactic signal transduction in H. pylori differs from the enterobacterial paradigm in several respects. In addition to a CheY response regulator protein (CheY1) H. pylori contains a CheY-like receiver domain (CheY2) which is C-terminally fused to the histidine kinase CheA. Furthermore, the genome of H. pylori encodes three CheV proteins consisting of an N-terminal CheW-like domain and a C-terminal receiver domain, while there are no orthologues of the chemotaxis genes cheB, cheR, and cheZ. To obtain insight into the mechanism controlling the chemotactic response of H. pylori the phosphotransfer reactions between the purified two-component signalling modules were investigated in vitro. Using in vitro phosphorylation assays it was shown that both H. pylori histidine kinases CheAY2 and CheA´ lacking the CheY-like domain (CheY2) act as ATP-dependent autokinases. Similar to other CheA proteins CheA´ shows a kinetic of phosphorylation represented by an exponential time course, while the kinetics of phosphorylation of CheAY2 is characterized by a short exponential time course followed by the hydrolysis of CheAY2~P. Therefore, it was demonstrated that the presence of the CheY2-like receiver domain influences the stability of the phosphorylated P1 domain of the CheA part of the bifunctional protein. Furthermore, it was proven that both CheY1 and CheY2 are phosphorylated by CheAY2 and CheA´~P and that the three CheV proteins mediate the dephosphorylation of CheA´~P, although with a clearly reduced efficiency as compared to CheY1 and CheY2. Moreover, CheA´ is capable of donating its phospho group to the CheY1 protein from C. jejuni and to CheY protein from E. coli. Retrophosphorylation experiments indicated that CheY1~P is able to transfer the phosphate group back to the HK CheAY2 and the receiver domain present in the bifunctional CheAY2 protein acts as a phosphate sink fine tuning the activity of the freely diffusible CheY1 protein, which is thought to interact with the flagellar motor. Hence, in this work evidence of a complex phosphorelay in the chemotaxis system was obtained which has similarities to other systems with multiple CheY proteins. The role of the CheV proteins remain unclear at the moment, but they might be engaged in a further fine regulation of the phosphate flow in this complex chemotaxis system and the independent function of the two domains CheA´ and CheY2 is not sufficient for normal chemotactic signalling in vivo.show moreshow less
  • Flagellen-basierte Motilität und Chemotaxis stellen essentielle Pathogenitätsfaktoren dar, die für die erfolgreiche Kolonisierung der Magenschleimhaut durch H. pylori notwendig sind. Die Mechanismen der Regulation der Flagellensynthese und das Chemotaxis-System von H. pylori weisen trotz einiger Ähnlichkeiten fundamentale Unterschiede zu den Systemen anderer Bakterien auf. In H. pylori ist die Flagellensynthese durch eine komplex regulierte Kaskade kontrolliert, die Regulatorkomponenten wie das Zweikomponentensystem HP244/FlgR, die SigmaFlagellen-basierte Motilität und Chemotaxis stellen essentielle Pathogenitätsfaktoren dar, die für die erfolgreiche Kolonisierung der Magenschleimhaut durch H. pylori notwendig sind. Die Mechanismen der Regulation der Flagellensynthese und das Chemotaxis-System von H. pylori weisen trotz einiger Ähnlichkeiten fundamentale Unterschiede zu den Systemen anderer Bakterien auf. In H. pylori ist die Flagellensynthese durch eine komplex regulierte Kaskade kontrolliert, die Regulatorkomponenten wie das Zweikomponentensystem HP244/FlgR, die Sigma Faktoren 54 und 28 und den Sigma Faktor28-Antagonisten FlgM enthält. Das Signal, welches über die Histidinkinase des Zweikomponentensystems HP244/FlgR die Expression der Sigma Faktor54-abhängigen Klasse 2 Flagellengene reguliert, ist bisher noch nicht bekannt. Allerdings konnte mit HP137 ein Protein identifiziert werden, das im „yeast two-hybrid“ System sowohl mit der korrespondierenden Kinase HP244 des Flagellenregulators FlgR, als auch mit der Flagellenkomponente FlgE´ interagiert (Rain et al., 2001). In dieser Arbeit wurde eine mögliche Rolle von HP137 in einem Rückkopplungsmechanismus untersucht, welcher die Aktivität der Histidinkinase in der Flagellenregulation kontrollieren könnte. Obwohl die Deletion des ORF hp137 zu einer unbeweglichen Mutante führte, legen die erfolglosen Komplementations Experimente, sowie die Beobachtung, dass HP137 in vitro keinen bedeutenden Effekt auf die Aktivität der Histidinkinase HP244 hat nahe, dass HP137 weder in H. pylori noch im nahe verwandten C. jejuni direkt an der Flagellenregulation beteiligt ist. Das Chemotaxis-System von H. pylori unterscheidet sich vom gutuntersuchten Chemotaxis-System der Enterobakterien in einigen Aspekten. Zusätzlich zu dem CheY Response Regulator Protein (CheY1) besitzt H. pylori eine weitere CheY-artige Receiver-Domäne (CheY2) welche C-terminal an die Histidinkinase CheA fusioniert ist. Zusätzlich finden sich im Genom von H. pylori Gene, die für drei CheV Proteine kodieren die aus einer N-terminalen Domäne ähnlich CheW und einer C-terminalen Receiver Domäne bestehen, während man keine Orthologen zu den Genen cheB, cheR, and cheZ findet. Um einen Einblick in den Mechanismus zu erhalten, welcher die chemotaktische Reaktion von H. pylori kontrolliert, wurden Phosphotransferreaktionen zwischen den gereinigten Signalmodulen des Zweikomponentensystems in vitro untersucht. Durch in vitro-Phosphorylierungsexperimente wurde eine ATP-abhängige Autophosphorylierung der bifunktionellen Histidinkinase CheAY2 und von CheA´, welches ein verkürztes Derivat von ChAY2 ohne Receiver-Domäne darstellt, nachgewiesen. CheA´ zeigt eine für an der Chemotaxis beteiligte Histidinkinasen typische Phosphorylierungskinetik mit einer ausgeprägten exponentiellen Phase, während die Phosphorylierungskinetik von CheAY2 nur eine kurze exponentielle Phase aufweist, gefolgt von einer Phase in der die Hydrolyse von CheAY2~P überwiegt. Es wurde gezeigt, dass die Anwesenheit einer der CheY2 Domäne die Stabilität der phosphorylierten P1 Domäne im CheA Teil des bifunktionellen Proteins beeinflusst. Außerdem wurde gezeigt, dass sowohl CheY1 als auch CheY2 durch CheAY2 phosphoryliert werden und dass die drei CheV Proteine die Histidinkinase CheA´~P dephosphorylieren, wenn auch mit einer im Vergleich zu CheY1 und CheY2 geringeren Affinität. Außerdem ist CheA´ in der Lage seine Phosphatgruppen auf CheY1 aus C. jejuni und CheY aus E. coli zu übertragen. Retrophosphorylierungsexperimente weisen darauf hin, dass CheY1~P die Phosphatgruppe zurück auf die Histidinkinase CheAY2 übertragen kann und dass die CheY2-Domäne in dem bifunktionellen Protein CheAY2 als „Phosphat Sink“ agiert der den Phosphorylierungszustand und damit die Aktivität des frei diffundierbaren Proteins CheY1 reguliert, das vermutlich es mit dem Flagellenmotor interagiert. Es konnte weiterhin gezeigt werden, dass die unabhängige Funktion der beiden Domänen CheA´ und CheY2 für eine normale chemotaktische Signalgebung in vivo nicht ausreicht. In dieser Arbeit wurden also Hinweise auf eine komplexe Kaskade Phosphatübertragungsreaktionen im chemotaktischen System von H. pylori gefunden, welches Ähnlichkeiten zu dem Syteme-Chemotaxis von S. meliloti aufweist an denen multiple CheY Proteine beteiligt sind. Die Rolle der CheV Proteine bleibt im Moment unklar, jedoch könnte es sein, dass sie an einer weiteren Feinregulierung der Phosphatgruppenübertragungsreaktionen in diesem komplexen chemotaktischen System beteiligt sindshow moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: María-Antonieta Jiménez-Pearson
URN:urn:nbn:de:bvb:20-opus-15698
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Biologie
Faculties:Medizinische Fakultät / Theodor-Boveri-Institut für Biowissenschaften
Date of final exam:2005/11/16
Language:English
Year of Completion:2005
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
GND Keyword:Helicobacter pylori; Chemotaxis; Motilität; Signaltransduktion
Tag:Chemotaxis; Flagellensynthese; Helicobacter pylori; Phosphotransferreaktionen
Chemotaxis; Flagella; Helicobacter pylori; Phosphotransfer reactions
Release Date:2005/11/29
Advisor: Beier Dagmar (Dr. PD)