• search hit 6 of 8
Back to Result List

Use of an ecologically relevant modelling approach to improve remote sensing-based schistosomiasis risk profiling

Please always quote using this URN: urn:nbn:de:bvb:20-opus-126148
  • Schistosomiasis is a widespread water-based disease that puts close to 800 million people at risk of infection with more than 250 million infected, mainly in sub-Saharan Africa. Transmission is governed by the spatial distribution of specific freshwater snails that act as intermediate hosts and the frequency, duration and extent of human bodies exposed to infested water sources during human water contact. Remote sensing data have been utilized for spatially explicit risk profiling of schistosomiasis. Since schistosomiasis risk profiling basedSchistosomiasis is a widespread water-based disease that puts close to 800 million people at risk of infection with more than 250 million infected, mainly in sub-Saharan Africa. Transmission is governed by the spatial distribution of specific freshwater snails that act as intermediate hosts and the frequency, duration and extent of human bodies exposed to infested water sources during human water contact. Remote sensing data have been utilized for spatially explicit risk profiling of schistosomiasis. Since schistosomiasis risk profiling based on remote sensing data inherits a conceptual drawback if school-based disease prevalence data are directly related to the remote sensing measurements extracted at the location of the school, because the disease transmission usually does not exactly occur at the school, we took the local environment around the schools into account by explicitly linking ecologically relevant environmental information of potential disease transmission sites to survey measurements of disease prevalence. Our models were validated at two sites with different landscapes in Côte d’Ivoire using high- and moderateresolution remote sensing data based on random forest and partial least squares regression. We found that the ecologically relevant modelling approach explained up to 70% of the variation in Schistosoma infection prevalence and performed better compared to a purely pixelbased modelling approach. Furthermore, our study showed that model performance increased as a function of enlarging the school catchment area, confirming the hypothesis that suitable environments for schistosomiasis transmission rarely occur at the location of survey measurements.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Yvonne Walz, Martin Wegmann, Benjamin Leutner, Stefan Dech, Penelope Vounatsou, Eliézer K. N'Goran, Giovanna Raso, Jürg Utzinger
URN:urn:nbn:de:bvb:20-opus-126148
Document Type:Journal article
Faculties:Philosophische Fakultät (Histor., philolog., Kultur- und geograph. Wissensch.) / Institut für Geographie und Geologie
Language:English
Parent Title (English):Geospatial Health
Year of Completion:2015
Volume:10
Issue:2
Pagenumber:398
Source:Geospatial Health 2015; 10:398. DOI:10.4081/gh.2015.398
DOI:https://doi.org/10.4081/gh.2015.398
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 52 Astronomie / 526 Mathematische Geografie
Tag:Côte d’Ivoire; ecological relevant model; remote sensing; schistosomiasis; spatial risk profiling
Release Date:2016/02/04
Collections:Open-Access-Publikationsfonds / Förderzeitraum 2015
Licence (German):License LogoCC BY-NC: Creative-Commons-Lizenz: Namensnennung, Nicht kommerziell