• search hit 6 of 2209
Back to Result List

Temperature-driven assembly processes of Orthoptera communities: Lessons on diversity, species traits, feeding interactions, and associated faecal microorganisms from elevational gradients in Southern Germany (Berchtesgaden Alps)

Temperaturabhängige Zusammensetzungsprozesse von Heuschreckengemeinschaften: Lektionen über die Diversität, Artmerkmale, Fraßinteraktionen, und Kot-Mikroorganismen von Höhengradienten in Süddeutschland (Berchtesgadener Alpen)

Please always quote using this URN: urn:nbn:de:bvb:20-opus-354608
  • Chapter I: Introduction Temperature is a major driver of biodiversity and abundance patterns on our planet, which becomes particularly relevant facing the entanglement of an imminent biodiversity and climate crisis. Climate shapes the composition of species assemblages either directly via abiotic filtering mechanisms or indirectly through alterations in biotic interactions. Insects - integral elements of Earth’s ecosystems - are affected by climatic variation such as warming, yet responses vary among species. While species’ traits,Chapter I: Introduction Temperature is a major driver of biodiversity and abundance patterns on our planet, which becomes particularly relevant facing the entanglement of an imminent biodiversity and climate crisis. Climate shapes the composition of species assemblages either directly via abiotic filtering mechanisms or indirectly through alterations in biotic interactions. Insects - integral elements of Earth’s ecosystems - are affected by climatic variation such as warming, yet responses vary among species. While species’ traits, antagonistic biotic interactions, and even species’ microbial mutualists may determine temperature-dependent assembly processes, the lion’s share of these complex relationships remains poorly understood due to methodological constraints. Mountains, recognized as hotspots of diversity and threatened by rapidly changing climatic conditions, can serve as natural experimental settings to study the response of insect assemblages and their trophic interactions to temperature variation, instrumentalizing the high regional heterogeneity of micro- and macroclimate. With this thesis, we aim to enhance our mechanistic understanding of temperature-driven assembly processes within insect communities, exemplified by Orthoptera, that are significant herbivores in temperate mountain grassland ecosystems. Therefore, we combined field surveys of Orthoptera assemblages on grassland sites with molecular tools for foodweb reconstruction, primarily leveraging the elevational gradients offered by the complex topography within the Berchtesgaden Alpine region (Bavaria, Germany) as surrogate for temperature variation (space-for-time substitution approach). In this framework, we studied the effects of temperature variation on (1) species richness, abundance, community composition, and interspecific as well as intraspecific trait patterns, (2) ecological feeding specialisation, and (3) previously neglected links to microbial associates found in the faeces. Chapter II: Temperature-driven assembly processes Climate varies at multiple scales. Since microclimate is often overlooked, we assessed effects of local temperature deviations on species and trait compositions of insect communities along macroclimatic temperature gradients in Chapter II. Therefore, we employed joint species distribution modelling to explore how traits drive variation in the climatic niches of Orthoptera species at grassland sites characterized by contrasting micro- and macroclimatic conditions. Our findings revealed two key insights: (1) additive effects of micro- and macroclimate on the diversity, but (2) interactive effects on the abundance of several species, resulting in turnover and indicating that species possess narrower climatic niches than their elevational distributions might imply. This chapter suggests positive effects of warming on Orthoptera, but also highlights that the interplay of macro- and microclimate plays a pivotal role in structuring insect communities. Thus, it underscores the importance of considering both elements when predicting the responses of species to climate change. Additionally, this chapter revealed inter- and intraspecific effects of traits on the niches and distribution of species. Chapter III: Dietary specialisation along climatic gradients A crucial trait linked to the position of climatic niches is dietary specialisation. According to the ‘altitudinal niche-breadth hypothesis’, species of high-elevation habitats should be less specialized compared to their low-elevation counterparts. However, empirical evidence on shifts in specialization is scarce for generalist insect herbivores and existing studies often fail to control for the phylogeny and abundance of interaction partners. In Chapter III, we used a combination of field observations and amplicon sequencing to reconstruct dietary relationships between Orthoptera and plants along an extensive temperature gradient. We did not find close but flexible links between individual grasshopper and plant taxa in space. While interaction network specialisation increased with temperature, the corrected dietary specialisation pattern peaked at intermediate elevations on assemblage level. These nuanced findings demonstrate that (1) resource availability, (2) phylogenetic relationships, and (3) climate can affect empirical foodwebs intra- and interspecifically and, hence, the dietary specialisation of herbivorous insects. In this context, we discuss that the underlying mechanisms involved in shaping the specialisation of herbivore assemblages may switch along temperature clines. Chapter IV: Links between faecal microbe communities, feeding habits, and climate Since gut microbes affect the fitness and digestion of insects, studying their diversity could provide novel insights into specialisation patterns. However, their association with insect hosts that differ in feeding habits and specialisation has never been investigated along elevational climatic gradients. In Chapter IV, we utilized the dietary information gathered in Chapter III to characterize links between insects with distinct feeding behaviour and the microbial communities present in their faeces, using amplicon sequencing. Both, feeding and climate affected the bacterial communities. However, the large overlap of microbes at site level suggests that common bacteria are acquired from the shared feeding environment, such as the plants consumed by the insects. These findings emphasize the influence of a broader environmental context on the composition of insect gut microbial communities. Chapter V: Discussion & Conclusions Cumulatively, the sections of this dissertation provide support for the hypothesis that climatic conditions play a role in shaping plant–herbivore systems. The detected variation of taxonomic and functional compositions contributes to our understanding of assembly processes and resulting diversity patterns within Orthoptera communities, shedding light on the mechanisms that structure their trophic interactions in diverse climates. The combined results presented suggest that a warmer climate could foster an increase of Orthoptera species richness in Central European semi-natural grasslands, also because the weak links observed between insect herbivores and plants are unlikely to limit decoupled range shifts. However, the restructuring of Orthoptera communities in response to warmer temperatures depends on species' traits such as moisture preferences or phenology. Notably, we were able to demonstrate a crucial role of microclimate for many species, partly unravelling narrower climatic niches than their elevational ranges suggest. We found evidence that not only Orthoptera community composition, specialisation, and traits varied along elevational gradients, but even microbial communities in the faeces of Orthoptera changed, which is a novel finding. This complex restructuring and reassembly of communities, coupled with the nonlinear specialisation of trophic interactions and a high diversity of associated bacteria, emphasize our currently incomplete comprehension of how ecosystems will develop under future climatic conditions, demanding caution in making simplified predictions for biodiversity change under climate warming. Since these predictions may benefit from including biotic interactions and both, micro- and macroclimate based on our findings, conservation authorities and practitioners must not neglect improving microclimatic conditions to ensure local survival of a diverse set of threatened and demanding species. In this context, mountains can play a pivotal role for biodiversity conservation since these offer heterogeneous microclimatic conditions in proximity that can be utilized by species with distinct niches.show moreshow less
  • Kapitel I: Einleitung Die Temperatur ist eine wichtige Triebkraft hinter den Artenvielfalts- und Abundanzmustern auf unserem Planeten, was angesichts der Verflechtung der unmittelbar bevorstehenden Biodiversitäts- und Klimakrise besonders relevant ist. Das Klima strukturiert die Artenvielfalt direkt durch abiotische Filtermechanismen oder indirekt durch Veränderungen biotischer Wechselwirkungen. Insekten - wesentliche Bestandteile der Ökosysteme der Erde - sind von klimatischen Veränderungen wie der Erwärmung betroffen, reagieren aber jeKapitel I: Einleitung Die Temperatur ist eine wichtige Triebkraft hinter den Artenvielfalts- und Abundanzmustern auf unserem Planeten, was angesichts der Verflechtung der unmittelbar bevorstehenden Biodiversitäts- und Klimakrise besonders relevant ist. Das Klima strukturiert die Artenvielfalt direkt durch abiotische Filtermechanismen oder indirekt durch Veränderungen biotischer Wechselwirkungen. Insekten - wesentliche Bestandteile der Ökosysteme der Erde - sind von klimatischen Veränderungen wie der Erwärmung betroffen, reagieren aber je nach Art unterschiedlich. Während die Merkmale der Arten, antagonistische biotische Interaktionen und sogar die mikrobiellen Partner der Arten temperaturabhängige Zusammensetzungsprozesse bestimmen können, bleibt ein Großteil dieser komplexen Beziehungen aufgrund methodischer Einschränkungen nach wie vor schlecht verstanden. Gebirge, die als Hotspots der Diversität gelten und von sich rasch verändernden klimatischen Bedingungen bedroht sind, können durch Nutzung der großen regionalen Heterogenität der Klein- und Großklimate als natürliche Experimente dienen, um die Reaktion von Insektengemeinschaften und deren trophischen Interaktionen auf Temperaturänderungen zu untersuchen. Mit dieser Arbeit möchten wir einen Beitrag zum mechanistischen Verständnis der temperaturbedingten Zusammensetzungsprozesse von Insektengemeinschaften leisten, am Beispiel von Heuschrecken, die bedeutende Pflanzenfresser in Grünlandökosystemen der gemäßigten Breiten sind. Hierfür kombinierten wir Felduntersuchungen von Heuschreckengemeinschaften in Grünlandstandorten mit molekularen Methoden zur Rekonstruktion von Nahrungsbeziehungen, wobei wir hauptsächlich die Höhengradienten, die die komplexe Topografie der Berchtesgadener Alpenregion (Bayern, Deutschland) bietet, stellvertretend für Temperaturveränderungen verwendeten (Raum-Zeit-Substitutionsansatz). In diesem Rahmen untersuchten wir die Auswirkungen von Temperaturvariation auf (1) den Artenreichtum, die Abundanz, die Zusammensetzung der Gemeinschaft und die inter- und intraspezifischen Merkmalsmuster, (2) die ökologische Nahrungsspezialisierung und (3) die bis dato vernachlässigte Verbindung zu den mikrobiellen Begleitarten im Kot. Kapitel II: Temperaturabhängige Zusammensetzungsprozesse Das Klima variiert auf verschiedenen Ebenen. Da Veränderungen im Kleinklima oft vernachlässigt werden, haben wir in Kapitel II die Auswirkungen der lokalen Temperaturunterschiede auf die Arten- und Merkmalszusammensetzung von Insektengemeinschaften entlang makroklimatischer Temperaturgradienten untersucht. Hierfür haben wir die Methode der gemeinsamen Artenverteilungsmodellierung verwendet, um zu untersuchen, wie Artmerkmale die Unterschiede in klimatischen Nischen von Heuschreckenarten auf Grünlandstandorten mit gegensätzlichen mikro- und makroklimatischen Bedingungen beeinflussen. Unsere Ergebnisse brachten zwei wichtige Erkenntnisse zutage: (1) additive Auswirkungen des Mikro- und Makroklimas auf die Vielfalt, aber (2) interaktive Effekte auf die Häufigkeit mehrerer Arten, die sich in Zusammensetzungsunterschieden niederschlagen und auf engere klimatische Nischen hinweisen, als es die Höhenverbreitung vermuten lässt. Dieses Kapitel deutet auf positive Auswirkungen einer Erwärmung auf Orthoptera hin, zeigt aber auch, dass das Zusammenspiel von Makro- und Mikroklima eine Schlüsselrolle bei der Strukturierung von Insektengemeinschaften spielt und beide Elemente bei der Vorhersage der Reaktionen von Arten auf den Klimawandel berücksichtigt werden sollten. Darüber hinaus wurden in diesem Kapitel die inter- und intraspezifischen Auswirkungen von Merkmalen auf die Nischen und die Verbreitung von Arten aufgezeigt. Kapitel III: Nahrungsspezialisierung entlang von Klimagradienten Ein entscheidendes Merkmal für die Lage der klimatischen Nische einer Art ist die Nahrungsspezialisierung. Nach der "Hypothese der Höhenlagen-abhängigen Nischenbreite" sollten Arten in hoch gelegenen Lebensräumen weniger spezialisiert sein als ihre Pendants in niedrigen Lagen. Empirische Belege für Verschiebungen in der Spezialisierung von generalistischen, herbivoren Insekten sind jedoch rar und es fehlt eine Berücksichtigung der Häufigkeit und Phylogenie von Interaktionspartnern. In Kapitel III haben wir eine Kombination aus Feldbeobachtungen und Amplikonsequenzierung verwendet, um die Nahrungsbeziehungen von Heuschrecken und Pflanzen entlang eines ausgedehnten Temperaturgradienten zu rekonstruieren. Wir konnten keine engen, sondern flexible Beziehungen zwischen einzelnen Herbivoren- und Pflanzentaxa feststellen. Während die Spezialisierung der Interaktionsnetzwerke mit der Temperatur zunahm, erreichte das korrigierte Muster der Nahrungsspezialisierung auf Gemeinschaftsebene seinen Höhepunkt in mittleren Höhenlagen. Diese differenzierten Ergebnisse zeigen, dass (1) die Verfügbarkeit von Ressourcen, (2) phylogenetische Beziehungen und (3) das Klima intra- und interspezifische empirische Nahrungsbeziehungen und damit die Nahrungsspezialisierung pflanzenfressender Insekten beeinflussen können. In diesem Kontext diskutieren wir, dass die zugrundeliegenden Mechanismen hinter der Nahrungsspezialisierung von herbivoren Insekten entlang von Temperaturgradienten wechseln könnten. Kapitel IV: Verbindungen zwischen Kotbakteriengemeinschaften, Ernährungsgewohnheiten und Klima. Da Darmbakterien die Fitness und Verdauung von Insekten beeinflussen, könnte die Untersuchung deren Vielfalt neue Erkenntnisse über Spezialisierungsmuster liefern. Ihre Verbindung mit Insekten, die sich in ihren Ernährungsgewohnheiten und ihrer Spezialisierung unterscheiden, wurde jedoch noch nie entlang klimatischer Höhengradienten untersucht. In Kapitel IV verwendeten wir Nahrungsinformationen aus Kapitel III, um mit Hilfe von Amplikonsequenzierung Verbindungen zwischen Insekten mit unterschiedlichem Ernährungsverhalten und mikrobiellen Gemeinschaften in deren Kot zu charakterisieren. Sowohl die Nahrung als auch das Klima hatten Auswirkungen auf die bakteriellen Gemeinschaften. Die große Überschneidung der Mikrobengemeinschaften auf Standortebene deutet jedoch darauf hin, dass gemeinsame Bakterien aus der geteilten Nahrungsumgebung, wie z.B. den von den Insekten verzehrten Pflanzen, stammen. Diese Ergebnisse unterstreichen den Einfluss eines breiteren Umweltkontextes auf die Zusammensetzung der mikrobiellen Gemeinschaften im Insektendarm. Kapitel V: Diskussion & Schlussfolgerungen Insgesamt stützen die Kapitel dieser Dissertation die Hypothese, dass klimatische Verhältnisse Pflanzen-Pflanzenfresser-Systeme prägen. Die festgestellten Unterschiede in der taxonomischen und funktionellen Zusammensetzung tragen zu unserem Verständnis der Zusammensetzungsprozesse und daraus resultierenden Diversitätsmustern von Heuschreckengemeinschaften sowie der Mechanismen bei, die deren trophische Interaktionen in verschiedenen Klimazonen strukturieren. Die Kombination der Ergebnisse deutet darauf hin, dass wärmeres Klima eine Zunahme des Heuschreckenartenreichtums in naturnahen Grünlandgebieten Mitteleuropas begünstigen könnte, auch weil die schwachen Verbindungen zwischen den herbivoren Insekten und Pflanzen entkoppelte Arealverschiebungen wahrscheinlich nicht limitieren. Jedoch könnten höhere Temperaturen die Zusammensetzung von Heuschreckengemeinschaften je nach den Merkmalen der Arten wie deren Feuchtigkeitsvorlieben oder der Schlupfphänologie verändern. Darüber hinaus konnten wir nachweisen, dass das Mikroklima für viele Arten eine entscheidende Rolle spielt, da es teilweise engere klimatische Nischen aufdeckt, als ihre Höhenverbreitung vermuten lassen. Wir fanden Hinweise darauf, dass sich nicht nur die Zusammensetzung, Spezialisierung und Merkmale der Heuschreckengemeinschaften entlang der Höhengradienten ändern, sondern dass sogar die mikrobiellen Gemeinschaften im Kot variieren, was eine neue Erkenntnis darstellt. Diese komplexe Umstrukturierung und Neuzusammensetzung von Gemeinschaften in Kombination mit der nichtlinearen Spezialisierung von Interaktionen und einer hohen Vielfalt an assoziierten Bakterien unterstreichen unser noch immer begrenztes Verständnis davon, wie sich Ökosysteme unter zukünftigen Klimabedingungen entwickeln werden, und mahnen zur Vorsicht bei vereinfachten Vorhersagen über die Veränderung der biologischen Vielfalt im Zuge der Klimaerwärmung. Da solche Vorhersagen auf Grundlage unserer Ergebnisse vom Einbezug biotischer Wechselwirkungen und des Mikro- und Makroklimas profitieren können, dürfen Naturschutzverantwortliche eine Verbesserung der mikroklimatischen Bedingungen nicht vernachlässigen, um das lokale Überleben einer Vielzahl bedrohter und anspruchsvoller Arten zu sichern. In diesem Zusammenhang können Berge eine entscheidende Rolle für den Erhalt der biologischen Vielfalt spielen, da sie in räumlicher Nähe heterogene mikroklimatische Bedingungen bieten, die von Arten mit unterschiedlichen Nischen genutzt werden können.show moreshow less

Download full text files

Export metadata

Metadaten
Author: Sebastian Thomas KönigORCiD
URN:urn:nbn:de:bvb:20-opus-354608
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Biologie
Faculties:Fakultät für Biologie / Theodor-Boveri-Institut für Biowissenschaften
Referee:Prof. Dr. Ingolf Steffan-Dewenter, Prof. Dr. Thomas Fartmann
Date of final exam:2024/04/11
Language:English
Year of Completion:2024
DOI:https://doi.org/10.25972/OPUS-35460
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 59 Tiere (Zoologie) / 590 Tiere (Zoologie)
GND Keyword:HeuschreckenGND; MikroklimaGND; Bayerische Alpen <Motiv>GND; NahrungGND; Mikrobiom <Genetik>GND
Tag:biotic interactions; elevational gradients; plant-herbivore-interactions
Release Date:2024/04/15
Licence (German):License LogoCC BY-NC: Creative-Commons-Lizenz: Namensnennung, Nicht kommerziell 4.0 International