• search hit 55 of 132
Back to Result List

Morphology of transcriptional units at different states of activity

Please always quote using this URN: urn:nbn:de:bvb:20-opus-41363
  • The morphology of two forms of transcription ally active chromatin, the nucleoli and the loops of lampbrush chromosomes, has been examined after fixation in situ or after isolation and dispersion of the material in media of low ionic strengths, using a variety of electron microscopic preparation techniques (e.g. spread preparations with positive or negative staining or without any staining at all, with bright and dark field illumination, with autoradiography, after pretreatment of the chromatin with specific detergents such as Sarkosyl NL-30;The morphology of two forms of transcription ally active chromatin, the nucleoli and the loops of lampbrush chromosomes, has been examined after fixation in situ or after isolation and dispersion of the material in media of low ionic strengths, using a variety of electron microscopic preparation techniques (e.g. spread preparations with positive or negative staining or without any staining at all, with bright and dark field illumination, with autoradiography, after pretreatment of the chromatin with specific detergents such as Sarkosyl NL-30; transmission and scanning transmission electron microscopy of ultrathin sections). Nucleolar chromatin and chromosomes from oocytes of various amphibia and insects as well as from green algae of the family of the Dasycladaceae were studied in particular detail. The morphology of transcriptional units that are densely packed with lateral ribonucleoprotein fibrils, indicative of great transcriptional activity, was compared with that of chromatin of reduced lateral fibril density, including stages of drug-induced inhibition. The micrographs showed that under conditions which preserve the nucleosomal organization in condensed chromatin studied in parallel, nucleosomes are not recognized in transcriptionally active chromatin. This holds for the transcribed regions as well as for apparently untranscribed (i.e. fibril-free) regions interspersed between ('spacer') and/or adjacent to transcribed genes and for the fibril-free regions within transcriptional units of reduced fibril density. In addition, comparison oflengths of repeating units of isolated rDNA with those observed in spread nucleolar chromatin indicated that this DNA is not foreshortened and packed into nucleosomal structures. Granular particles which were observed, at irregular frequencies and in variable patterns, in some spacer regions, did not result in a proportional shortening of the spacer axis, and were found to be resistant to detergent treatment effective in removing most of the chromatin associated proteins including histones. Thus, these particles behave like RNA polymerases rather than nucleosomes. It is suggested that structural changes from nucleosomal packing to an extended form of DNA are involved in the transcriptional activation of chromatin.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Werner W. Franke, Ulrich Scheer
URN:urn:nbn:de:bvb:20-opus-41363
Document Type:Journal article
Faculties:Fakultät für Biologie / Theodor-Boveri-Institut für Biowissenschaften
Language:English
Year of Completion:1978
Source:In: Philosophical transactions of the Royal Society of London / B (1978) 283, 333 - 342.
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Release Date:2010/01/29