• search hit 8 of 28
Back to Result List

The Role of Raf-mediated Signalling Pathways for Motoneuron

Die Rolle von Raf-vermittelten Signalwegen bei Entwicklung und Überleben von Motoneuronen

Please always quote using this URN: urn:nbn:de:bvb:20-opus-1846
  • The transmission of proliferative and developmental signals from activated cell-surface receptors to initiation of cellular responses in the nucleus is synergically controlled by the coordinated action of a diverse set of intracellular signalling proteins. The Ras/Raf/MEK/MAPK signalling pathway has been shown to control the expression of genes which are crucial for the physiological regulation of cell proliferation, differentiation and apoptosis. Within this signalling cascade, the Raf protein family of serine/threonine kinases serves as aThe transmission of proliferative and developmental signals from activated cell-surface receptors to initiation of cellular responses in the nucleus is synergically controlled by the coordinated action of a diverse set of intracellular signalling proteins. The Ras/Raf/MEK/MAPK signalling pathway has been shown to control the expression of genes which are crucial for the physiological regulation of cell proliferation, differentiation and apoptosis. Within this signalling cascade, the Raf protein family of serine/threonine kinases serves as a central intermediate which connects to many of other signal transduction pathways. To elucidate the signalling functions of the different Raf kinases in motoneurons during development, the expression, distribution and subcellular localization of Rafs in the spinal cord and the facial nucleus in brainstem of mice at various embryonic and postnatal stages were investigated. Moreover, we have investigated the intracellular redistribution of Raf molecules in isolated motoneurons from 13 or 14 day old mouse embryos, after addition or withdrawal of neurotrophic factors to induce Raf kinases activation in vitro. Furthermore, in order to investigate the potential anti-apoptotic function of Raf kinases on motoneurons, we isolated motoneurons from B-raf-/- and c-raf-1-/- mouse embryos and analysed the survival and differentiation effects of neurotrophic factors in motoneurons lacking B-Raf and c-Raf-1. We provide evidence here that all three Raf kinases are expressed in mouse spinal motoneurons. Their expression increases during the period of naturally occurring cell death of motoneurons. In sections of embryonic and postnatal spinal cord, motoneurons express exclusively B-Raf and c-Raf-1, but not A-Raf, and subcellularly Raf kinases are obviously colocalized with mitochondria. In isolated motoneurons, most of the B-Raf or c-Raf-1 immunoreactivity is located in the perinuclear space but also in the nucleus, especially after activation by addition of CNTF and BDNF in vitro. We found that c-Raf-1 translocation from the cytosol into the nucleus of motoneurons after its activation by neurotrophic factors is a distinct event. As a central finding of our study, we observed that the viability of isolated motoneurons from B-raf but not c-raf-1 knockout mice is lost even in the presence of CNTF and other neurotrophic factors. This indicates that B-Raf but not c-Raf-1, which is still present in B-raf deficient motoneurons, plays a crucial role in mediating the survival effect of neurotrophic factors during development. In order to prove that B-Raf is an essential player in this scenario, we have re-expressed B-Raf in mutant sensory and motor neurons by transfection. The motoneurons and the sensory neurons from B-raf knockout mouse which were transfected with exogenous B-raf gene revealed the same viability in the presence of neurotrophic factors as primary neurons from wild-type mice. Our results suggest that Raf kinases have important signalling functions in motoneurons in mouse CNS. In vitro, activation causes redistribution of Raf protein kinases, particularly for c-Raf-1, from motoneuronal cytoplasm into the nucleus. This redistribution of c-Raf-1, however, is not necessary for the survival effect of neurotrophic factors, given that B-raf-/- motor and sensory neurons can not survive despite the presence of c-Raf-1. We hypothesize that c-Raf-1 nuclear translocation may play a direct role in transcriptional regulation as a consequence of neurotrophic factor induced phosphorylation and activation of c-Raf-1 in motoneurons. Moreover, the identification of target genes for nuclear translocated c-Raf-1 and of specific cellular functions initiated by this mechanism awaits its characterization.show moreshow less
  • Die Vermittlung von wachstumsfördernden und entwicklungsspezifischen Signalen von aktivierten Zelloberflächenrezeptoren führt zur Initiation von Transkriptionsprogrammen im Zellkern, die durch das koodinierte Zusammenwirken von intrazellulären Signalproteinen synergistisch gesteuert werden. Der Ras/Raf/MEK/MAPK-Weg steuert die Expression von Genen für die physiologische Regulation der Zellproliferation, Differenzierung und Apoptose. Innerhalb dieser Signalkaskade stellen die Serin/Threonin Kinasen der Raf Familie eine zentrale ZwischenstufeDie Vermittlung von wachstumsfördernden und entwicklungsspezifischen Signalen von aktivierten Zelloberflächenrezeptoren führt zur Initiation von Transkriptionsprogrammen im Zellkern, die durch das koodinierte Zusammenwirken von intrazellulären Signalproteinen synergistisch gesteuert werden. Der Ras/Raf/MEK/MAPK-Weg steuert die Expression von Genen für die physiologische Regulation der Zellproliferation, Differenzierung und Apoptose. Innerhalb dieser Signalkaskade stellen die Serin/Threonin Kinasen der Raf Familie eine zentrale Zwischenstufe dar, die Verbindungen zu vielen anderen Signaltransduktionswegen herstellt. Um die Funktionen der verschiedenen Raf-Kinasen in Motoneuronen während der Entwicklung aufzuklären, wurden die Expression, Verteilung und subzelluläre Lokalisation der Raf-Isoformen in spinalen Motoneuronen und im Nucleus Fazialis der Maus während der Embryonalentwicklung und postnatal untersucht. Desweiteren haben wir die intrazelluläre Umverteilung der Raf-Moleküle in isolierten Motoneuronen von 13 oder 14 Tage alten Mäusembryonen untersucht. Um die Rolle der Raf-Kinasen nach Zugabe oder Entzug von neurotrophen Faktoren bei Motoneuronen zu untersuchen, analysierten wir die Überlebens-und Differenzierungseffekte von neurotrophen Faktoren bei Motoneuronen von B-raf oder c-raf-1 defizienten Mäusen. Wir zeigen in dieser Arbeit, daß alle drei Raf-Kinasen in spinalen Motoneuronen der Mäuse exprimiert sind. Ihre Expression steigt während der Zeit des natürlich auftretenden Zelltods. An Schnitten von embryonalem und postnatalem Rückenmark exprimieren Motoneurone ausschließlich B-Raf and c-Raf-1, aber nicht A-Raf. Raf-Kinasen sind offensichtlich an Mitochondrien lokalisiert. In isolierten Motoneuronen findet man B-Raf und c-Raf-1, Immunreaktivität vor allem im perinukleären Bereich, aber auch im Zellkern, vor allem nach Aktivierung durch Zugabe von CNTF und BDNF in vitro. Wir haben gefunden, daß die Translokation von c-Raf-1 vom Zytosol in den Nukleus von Motoneuronen nach Aktivierung durch neurotrophe Faktoren ein spezifischer Vorgang ist. Als zentralen Befund dieser Arbeit beobachteten wir, daß Motoneurone von B-raf-/-, aber nicht von c-raf-1-/-, Embryonen nicht lebensfähig sind, auch nicht in Gegenwart von CNTF oder anderer neurotropher Faktoren. Dies bedeutet, daß B-Raf und nicht c-Raf-1, welches noch immer in B-raf defizienten Motoneuronen präsent ist, eine entscheidende Rolle als Vermitter des Überlebenseffektes von neurotrophen Faktoren spielt. Um zu beweisen, daß B-Raf hierbei eine essentielle Komponente darstellt, haben wir in B-raf defizienten sensorischen und Motoneuronen B-Raf durch Transfektion exprimiert. Erfolgreich mit B-raf Plasmid transfizierte B-raf-/- sensorische und Motoneurone zeigten dieselbe Überlebensfähigkeit in Gegenwart von neurotrophen Faktoren wie primäre Neurone von Wildtyp-Mäusen. Diese Arbeit zeigt daher, daß Raf-Kinasen wichtige Funktionen in Motoneuronen der Maus haben. Die Aktivierung von Raf-Kinasen in vitro führt zur Änderung ihrer subzellulären Verteilung, vor allem von c-Raf-1 vom Zytoplasma in den Kern. Diese Umverteilung von c-Raf-1 ist jedoch nicht notwendig für den Überlebenseffekt von neurotrophen Faktoren, vor allem, wenn man in Betracht zieht, daß B-raf defiziente sensorische und Motoneuronen trotz der Gegenwart von c-Raf-1 nicht überleben. Wir nehmen an, daß die nukleäre Translokation von c-Raf-1 eine direkte Rolle bei der transkriptionellen Regulation durch neurotrophe Faktoren spielt. Die Indentifizierung von c-Raf-1 regulierten Zielgenen und von durch diese beeinflussten zellulären Funktionen ist eine Aufgabe für die Zukunft.show moreshow less
Metadaten
Author: Geng Pei
URN:urn:nbn:de:bvb:20-opus-1846
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Biologie
Faculties:Medizinische Fakultät / Institut für Klinische Neurobiologie
Fakultät für Biologie / Theodor-Boveri-Institut für Biowissenschaften
Date of final exam:2000/08/10
Language:English
Year of Completion:2000
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
GND Keyword:Maus; Motoneuron; Zelldifferenzierung; Raf <Biochemie>; Signaltransduktion; Raf-Kinasen
Tag:Motoneuron; Raf-Kinase; Zentrales Nervensystem
CNS; Raf; motoneuron
Release Date:2002/08/20
Advisor:Prof. Dr. Michael Sendtner