• search hit 10 of 52
Back to Result List

Rhodopsin-cyclases for photocontrol of cGMP/cAMP and 2.3 Å structure of the adenylyl cyclase domain

Please always quote using this URN: urn:nbn:de:bvb:20-opus-228517
  • The cyclic nucleotides cAMP and cGMP are important second messengers that orchestrate fundamental cellular responses. Here, we present the characterization of the rhodopsinguanylyl cyclase from Catenaria anguillulae (CaRhGC), which produces cGMP in response to green light with a light to dark activity ratio > 1000. After light excitation the putative signaling state forms with tau = 31 ms and decays with tau = 570 ms. Mutations (up to 6) within the nucleotide binding site generate rhodopsin-adenylyl cyclases (CaRhACs) of which the doubleThe cyclic nucleotides cAMP and cGMP are important second messengers that orchestrate fundamental cellular responses. Here, we present the characterization of the rhodopsinguanylyl cyclase from Catenaria anguillulae (CaRhGC), which produces cGMP in response to green light with a light to dark activity ratio > 1000. After light excitation the putative signaling state forms with tau = 31 ms and decays with tau = 570 ms. Mutations (up to 6) within the nucleotide binding site generate rhodopsin-adenylyl cyclases (CaRhACs) of which the double mutated YFP-CaRhAC (E497K/C566D) is the most suitable for rapid cAMP production in neurons. Furthermore, the crystal structure of the ligand-bound AC domain (2.25 angstrom) reveals detailed information about the nucleotide binding mode within this recently discovered class of enzyme rhodopsin. Both YFP-CaRhGC and YFP-CaRhAC are favorable optogenetic tools for non-invasive, cell-selective, and spatio-temporally precise modulation of cAMP/cGMP with light.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Ulrike Scheib, Matthias Broser, Oana M. Constantin, Shang Yang, Shiqiang Gao, Shatanik Mukherjee, Katja Stehfest, Georg Nagel, Christine E. Gee, Peter Hegemann
URN:urn:nbn:de:bvb:20-opus-228517
Document Type:Journal article
Faculties:Fakultät für Biologie / Julius-von-Sachs-Institut für Biowissenschaften
Fakultät für Biologie / Theodor-Boveri-Institut für Biowissenschaften
Language:English
Parent Title (English):Nature Communications
Year of Completion:2018
Volume:9
Pagenumber:2046, 1-15
Source:Nature Communications (2018) 9:2046
DOI:https://doi.org/10.1038/s41467-018-04428-w
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Tag:Enzymes; Molecular biophysics; Molecular neuroscience; X-ray crystallography
Release Date:2023/02/03
Licence (German):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung 4.0 International