• search hit 1 of 1
Back to Result List

Nonlinear spectroscopy at the diffraction limit: probing ultrafast dynamics with shaped few-cycle laser pulses

Nichtlineare Spektroskopie am Beugungslimit: Untersuchung ultraschneller Dynamiken mit geformten Laserpulsen

Please always quote using this URN: urn:nbn:de:bvb:20-opus-192138
  • An experimental setup for probing ultrafast dynamics at the diffraction limit was developed, characterized and demonstrated in the scope of the thesis, aiming for optical investigations while simultaneously approaching the physical limits on the length and timescale. An overview of this experimental setup was given in Chapter 2, as well as the considerations that led to the selection of the individual components. Broadband laser pulses with a length of 9.3 fs, close to the transform limit of 7.6 fs, were focused in a NA = 1.4 immersion oilAn experimental setup for probing ultrafast dynamics at the diffraction limit was developed, characterized and demonstrated in the scope of the thesis, aiming for optical investigations while simultaneously approaching the physical limits on the length and timescale. An overview of this experimental setup was given in Chapter 2, as well as the considerations that led to the selection of the individual components. Broadband laser pulses with a length of 9.3 fs, close to the transform limit of 7.6 fs, were focused in a NA = 1.4 immersion oil objective, to the diffraction limit of below 300 nm (FWHM). The spatial focus shape was characterized with off-resonance gold nanorod scatterers scanned through the focal volume. For further insights into the functionality and limitations of the pulse shaper, its calibration procedure was reviewed. The deviations between designed and experimental pulse shapes were attributed to pulse-shaper artifacts, including voltage-dependent inter-layer as well as intra-layer LCD-pixel crosstalk, Fabry-Pérot-type reflections in the LCD layers, and space-time coupling. A pixel-dependent correction was experimentally carried out, which can be seen as an extension of the initial calibration to all possible voltage combinations of the two LCD layers. The capabilities of the experimental setup were demonstrated in two types of experiments, targeting the nonlinearity of gold (Chapter 3) as well as two-dimensional spectroscopy at micro-structured surfaces (Chapter 4). Investigating thin films, an upper bound for the absolute value for the imaginary part of the nonlinear refractive index of gold could be set to |n′′ 2 (Au)| < 0.6·10−16 m2/W, together with |n′ 2 (Au)| < 1.2·10−16 m2/W as an upper bound for the absolute value of the real part. Finite-difference time-domain simulations on y-shaped gold nanostructures indicated that a phase change of ∆Φ ≥ 0.07 rad between two plasmonic modes would induce a sufficient change in the spatial contrast of emission to the far-field to be visible in the experiment. As the latter could not be observed, this value of ∆Φ was determined as the upper bound for the experimentally induced phase change. An upper bound of 52 GW/cm2 was found for the damage threshold. In Chapter 4, a novel method for nonlinear spectroscopy on surfaces was presented. Termed coherent two-dimensional fluorescence micro-spectroscopy, it is capable of exploring ultrafast dynamics in nanostructures and molecular systems at the diffraction limit. Two-dimensional spectra of spatially isolated hotspots in structured thin films of fluorinated zinc phthalocyanine (F16ZnPc) dye were taken with a 27-step phase-cycling scheme. Observed artifacts in the 2D maps were identified as a consequence from deviations between the desired and the experimental pulse shapes. The optimization procedures described in Chapter 2 successfully suppressed the deviations to a level where the separation from the nonlinear sample response was feasible. The experimental setup and methods developed and presented in the scope of this thesis demonstrate its flexibility and capability to study microscopic systems on surfaces. The systems exemplarily shown are consisting of metal-organic dyes and metallic nanostructures, represent samples currently under research in the growing fields of organic semiconductors and plasmonics.show moreshow less
  • Ein experimenteller Aufbau zur Untersuchung von ultraschnellen Dynamiken am Beugungslimit wurde in dieser Arbeit entwickelt, charakterisiert und demonstriert. Sie hatte zum Ziel, im Rahmen von optischen Beobachtungen gleichzeitig an die physikalischen Grenzen von Längen- und Zeitskalen zu gehen Es wurde ein Überblick über den verwendeten experimentellen Aufbau gegeben, zusammen mit den Überlegungen, die zur Auswahl der einzelnen Komponenten geführt haben. Für die Pulslänge der spektral breitbandigen Laserpulse wurde auf 9.3 fs gemessen, wasEin experimenteller Aufbau zur Untersuchung von ultraschnellen Dynamiken am Beugungslimit wurde in dieser Arbeit entwickelt, charakterisiert und demonstriert. Sie hatte zum Ziel, im Rahmen von optischen Beobachtungen gleichzeitig an die physikalischen Grenzen von Längen- und Zeitskalen zu gehen Es wurde ein Überblick über den verwendeten experimentellen Aufbau gegeben, zusammen mit den Überlegungen, die zur Auswahl der einzelnen Komponenten geführt haben. Für die Pulslänge der spektral breitbandigen Laserpulse wurde auf 9.3 fs gemessen, was nahe an der transformlimitierten Dauer von 7.6 fs liegt. Im beugungslimitierten Fokus eines Immersionsölobjektivs mit einer numerischen Apertur von 1.4 konnte das Licht räumlich auf eine Halbwertsbreite von unter 300 nm komprimiert werden. Der Fokus des Mikroskopobjektivs wurde mit Hilfe der Streuung von nicht resonanten Nanopartikeln aus Gold ausgemessen, indem diese räumlich durch den Fokus gerastert wurden. Zur weiteren Untersuchung des Funktionsumfangs und der Grenzen des benutzten Pulsformers wurde dessen Eichprozedur geprüft. Die Abweichungen zwischen gewünschten und tatsächlich angelegten Pulsformen wurden auf Artefakte des Pulsformers zurückgeführt. Diese Artefakte beinhalten eine spannungsabhängige Beeinflussung der LCD-Pixel sowohl zwischen benachbarten Pixeln einer Schicht als auch zwischen Pixeln unterschiedlicher Schichten. Eine pixelabhängige Korrektur wurde implementiert, die eine Erweiterung der ursprünglichen Kalibrierung auf alle möglichen Spannungskombinationen der LCD-Pixel darstellt. Die Möglichkeiten experimentellen Aufbaus wurden mit zwei Arten von Experimenten demonstriert: Messungen zur Bestimmung des nichtlinearen Brechungsindexes von Gold (Kapitel 3) sowie zweidimensionale Spektroskopie an mikrostrukturierten Oberflächen (Kapitel 4). Für den nichtlinearen Brechungsindexes von Gold konnte an Dünnschichten eine obere Grenze von |n′′ 2 (Au)| < 0.6·10−16 m2/W für den Betrag des Imaginärteils und |n′ 2 (Au)| < 1.2·10−16 m2/W für den Betrag des Realteils festgesetzt werden. Simulationen mit der Finite-Differenzen-Methode an Y-förmige Nanostrukturen aus Gold zeigten, dass eine Phasenänderung von ∆Φ ≥ 0.07 rad zwischen zwei plasmonischen Moden ausreichend für eine experimentell sichtbare Kontraständerung der Fernfeldabstrahlung wäre. Da letztere nicht beobachtet werden konnte, wurde dieser Wert für ∆Φ als obere Grenze für die experimentell eingeführte Phasenänderung festgesetzt. Für die Zerstörschwelle wurde eine obere Grenze von 52 GW/cm2 gefunden. In Kapitel 4, wurde eine neue Methode für nichtlineare Spektroskopie an Oberflächen vorgestellt. Sie trägt den Namen ”Kohärente zweidimensionale Fluoreszenz-Mikrospektroskopie“ und eignet sich zur Untersuchung ultraschneller Dynamiken in Nanostrukturen und molekularen Systemen am Beugungslimit. Es wurden 2D-Spektren von räumlich isolierten Hotspots einer strukturierten Zink-Phthalocyanin (F16ZnPc) Dünnschicht mit 27-fachem Phasecycling aufgenommen. Als Grund für Artefakte in den 2D-Karten wurden Abweichungen zwischen den gewünschten und experimentellen Pulsformen identifiziert. Durch die in Kapitel 2 vorgestellten Optimierungen konnten die Abweichungen allerdings so stark reduziert werden, dass deren Trennung von der nichtlinearen Antwort der Probe möglich wurde. Die Flexibilität und der Funktionsumfang zur Analyse mikroskopischer Systeme der im Rahmen dieser Arbeit entwickelten experimentellen Aufbauten und Methoden wurde demonstriert. Repräsentativ für die wachsenden Forschungsfelder der organischen Halbleiter und der Plasmonik wurden exemplarisch Systeme bestehend aus metall-organischen Farbstoffen und metallischen Nanostrukturen untersucht.show moreshow less

Download full text files

Export metadata

Metadaten
Author: Sebastian Reinhold Götz
URN:urn:nbn:de:bvb:20-opus-192138
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Physik und Astronomie
Faculties:Fakultät für Chemie und Pharmazie / Institut für Physikalische und Theoretische Chemie
Referee:Prof. Dr. Tobias Brixner, Prof. Dr. Bert Hecht, Prof. Dr. Björn Trauzettel
Date of final exam:2019/09/27
Language:English
Year of Completion:2019
DOI:https://doi.org/10.25972/OPUS-19213
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
GND Keyword:Ultrakurzzeitspektroskopie; Fluoreszenzspektroskopie; Fourier-Spektroskopie; Nanostruktur; Konfokale Mikroskopie
Tag:Kohärente Multidimensionale Spektroskopie; LCD Pulsformer; Laserpulsformung; Oberflächenplasmon
Coherent Multidimensional Spectroscopy; LCD Pulse Shaper; Laser Pulse Shaping; Surface Plasmon
PACS-Classification:40.00.00 ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS / 42.00.00 Optics (for optical properties of gases, see 51.70.+f; for optical properties of bulk materials and thin films, see 78.20.-e; for x-ray optics, see 41.50.+h) / 42.65.-k Nonlinear optics / 42.65.Re Ultrafast processes; optical pulse generation and pulse compression
70.00.00 CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES / 73.00.00 Electronic structure and electrical properties of surfaces, interfaces, thin films, and low-dimensional structures (for electronic structure and electrical properties of superconducting films and low-dimensional structures, see 74.78.-w; for computational / 73.20.-r Electron states at surfaces and interfaces / 73.20.Mf Collective excitations (including excitons, polarons, plasmons and other charge-density excitations) (for collective excitations in quantum Hall effects, see 73.43.Lp)
70.00.00 CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES / 78.00.00 Optical properties, condensed-matter spectroscopy and other interactions of radiation and particles with condensed matter / 78.67.-n Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures / 78.67.Bf Nanocrystals and nanoparticles
Release Date:2019/11/29
Licence (German):License LogoDeutsches Urheberrecht mit Print on Demand