• search hit 2 of 2
Back to Result List

Identification of a PRPF4 Loss-of-Function Variant That Abrogates U4/U6.U5 Tri-snRNP Integration and Is Associated with Retinitis Pigmentosa

Please always quote using this URN: urn:nbn:de:bvb:20-opus-113663
  • Pre-mRNA splicing by the spliceosome is an essential step in the maturation of nearly all human mRNAs. Mutations in six spliceosomal proteins, PRPF3, PRPF4, PRPF6, PRPF8, PRPF31 and SNRNP200, cause retinitis pigmentosa (RP), a disease characterized by progressive photoreceptor degeneration. All splicing factors linked to RP are constituents of the U4/U6.U5 tri-snRNP subunit of the spliceosome, suggesting that the compromised function of this particle may lead to RP. Here, we report the identification of the p.R192H variant of the tri-snRNPPre-mRNA splicing by the spliceosome is an essential step in the maturation of nearly all human mRNAs. Mutations in six spliceosomal proteins, PRPF3, PRPF4, PRPF6, PRPF8, PRPF31 and SNRNP200, cause retinitis pigmentosa (RP), a disease characterized by progressive photoreceptor degeneration. All splicing factors linked to RP are constituents of the U4/U6.U5 tri-snRNP subunit of the spliceosome, suggesting that the compromised function of this particle may lead to RP. Here, we report the identification of the p.R192H variant of the tri-snRNP factor PRPF4 in a patient with RP. The mutation affects a highly conserved arginine residue that is crucial for PRPF4 function. Introduction of a corresponding mutation into the zebrafish homolog of PRPF4 resulted in a complete loss of function in vivo. A series of biochemical experiments suggested that p.R192H disrupts the binding interface between PRPF4 and its interactor PRPF3. This interferes with the ability of PRPF4 to integrate into the tri-snRNP, as shown in a human cell line and in zebrafish embryos. These data suggest that the p.R192H variant of PRPF4 represents a functional null allele. The resulting haploinsufficiency of PRPF4 compromises the function of the tri-snRNP, reinforcing the notion that this spliceosomal particle is of crucial importance in the physiology of the retina.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Bastian Linder, Anja Hirmer, Andreas Gal, Klaus Rüther, Hanno Jörn Bolz, Christoph Winkler, Bernhard Laggerbauer, Utz Fischer
URN:urn:nbn:de:bvb:20-opus-113663
Document Type:Journal article
Faculties:Fakultät für Biologie / Theodor-Boveri-Institut für Biowissenschaften
Language:English
Year of Completion:2014
Source:PLoS ONE 9(11): e111754. doi:10.1371/journal.pone.0111754
DOI:https://doi.org/10.1371/journal.pone.0111754
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 572 Biochemie
Tag:RNA splicing; arginine; embryos; immunoprecipitation; messenger RNA; mutation; spliceosomes; zebrafish
Release Date:2015/06/23
Collections:Open-Access-Publikationsfonds / Förderzeitraum 2014
Licence (German):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung