• search hit 9 of 9
Back to Result List

Spray‐Drying and Atomic Layer Deposition: Complementary Tools toward Fully Orthogonal Control of Bulk Composition and Surface Identity of Multifunctional Supraparticles

Please always quote using this URN: urn:nbn:de:bvb:20-opus-262521
  • Spray‐drying is a scalable process enabling one to assemble freely chosen nanoparticles into supraparticles. Atomic layer deposition (ALD) allows for controlled thin film deposition of a vast variety of materials including exotic ones that can hardly be synthesized by wet chemical methods. The properties of coated supraparticles are defined not only by the nanoparticle material chosen and the nanostructure adjusted during spray‐drying but also by surface functionalities modified by ALD, if ALD is capable of modifying not only the outer surfacesSpray‐drying is a scalable process enabling one to assemble freely chosen nanoparticles into supraparticles. Atomic layer deposition (ALD) allows for controlled thin film deposition of a vast variety of materials including exotic ones that can hardly be synthesized by wet chemical methods. The properties of coated supraparticles are defined not only by the nanoparticle material chosen and the nanostructure adjusted during spray‐drying but also by surface functionalities modified by ALD, if ALD is capable of modifying not only the outer surfaces but also surfaces buried inside the porous supraparticle. Simultaneously, surface accessibility in the porous supraparticles must be ensured to make use of all functionalized surfaces. In this work, iron oxide supraparticles are utilized as a model substrate as their magnetic properties enable the use of advanced magnetic characterization methods. Detailed information about the structural evolution upon individual ALD cycles of aluminium oxide, zinc oxide and titanium dioxide are thereby revealed and confirmed by gas sorption analyses. This demonstrates a powerful and versatile approach to freely designing the functionality of future materials by combination of spray‐drying and ALD.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Stephan Müssig, Vanessa M. Koch, Carlos Collados Cuadrado, Julien Bachmann, Matthias Thommes, Maïssa K. S. Barr, Karl Mandel
URN:urn:nbn:de:bvb:20-opus-262521
Document Type:Journal article
Language:English
Parent Title (English):Small Methods
Year of Completion:2022
Volume:6
Issue:1
Article Number:2101296
Source:Small Methods 2022, 6(1):2101296. DOI: 10.1002/smtd.202101296
DOI:https://doi.org/10.1002/smtd.202101296
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Tag:atomic layer deposition; spray‐drying; supraparticles
Release Date:2022/12/06
EU-Project number / Contract (GA) number:647281
OpenAIRE:OpenAIRE
Licence (German):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung 4.0 International