• search hit 1 of 26
Back to Result List

Numerical and Structural Genomic Aberrations Are Reliably Detectable in Tissue Microarrays of Formalin-Fixed Paraffin-Embedded Tumor Samples by Fluorescence In-Situ Hybridization

Please always quote using this URN: urn:nbn:de:bvb:20-opus-116706
  • Few data are available regarding the reliability of fluorescence in-situ hybridization (FISH), especially for chromosomal deletions, in high-throughput settings using tissue microarrays (TMAs). We performed a comprehensive FISH study for the detection of chromosomal translocations and deletions in formalin-fixed and paraffin-embedded (FFPE) tumor specimens arranged in TMA format. We analyzed 46 B-cell lymphoma (B-NHL) specimens with known karyotypes for translocations of IGH-, BCL2-, BCL6- and MYC-genes. Locus-specific DNA probes were used forFew data are available regarding the reliability of fluorescence in-situ hybridization (FISH), especially for chromosomal deletions, in high-throughput settings using tissue microarrays (TMAs). We performed a comprehensive FISH study for the detection of chromosomal translocations and deletions in formalin-fixed and paraffin-embedded (FFPE) tumor specimens arranged in TMA format. We analyzed 46 B-cell lymphoma (B-NHL) specimens with known karyotypes for translocations of IGH-, BCL2-, BCL6- and MYC-genes. Locus-specific DNA probes were used for the detection of deletions in chromosome bands 6q21 and 9p21 in 62 follicular lymphomas (FL) and six malignant mesothelioma (MM) samples, respectively. To test for aberrant signals generated by truncation of nuclei following sectioning of FFPE tissue samples, cell line dilutions with 9p21-deletions were embedded into paraffin blocks. The overall TMA hybridization efficiency was 94%. FISH results regarding translocations matched karyotyping data in 93%. As for chromosomal deletions, sectioning artefacts occurred in 17% to 25% of cells, suggesting that the proportion of cells showing deletions should exceed 25% to be reliably detectable. In conclusion, FISH represents a robust tool for the detection of structural as well as numerical aberrations in FFPE tissue samples in a TMA-based high-throughput setting, when rigorous cut-off values and appropriate controls are maintained, and, of note, was superior to quantitative PCR approaches.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Heike Horn, Julia Bausinger, Annette M. Staiger, Maximilian Sohn, Christopher Schmelter, Kim Gruber, Claudia Kalla, M. Michaela Ott, Andreas Rosenwald, German Ott
URN:urn:nbn:de:bvb:20-opus-116706
Document Type:Journal article
Faculties:Medizinische Fakultät / Pathologisches Institut
Language:English
Parent Title (English):PLOS ONE
ISSN:1932-6203
Year of Completion:2014
Volume:9
Issue:4
Pagenumber:e95047
Source:PLoS ONE 9(4): e95047. doi:10.1371/journal.pone. 0095047
DOI:https://doi.org/10.1371/journal.pone.0095047
Pubmed Id:https://pubmed.ncbi.nlm.nih.gov/24733537
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Tag:abnormalities; amplifications; deletions; mantel cell lymphoma
Release Date:2015/08/03
Licence (German):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung