The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 6 of 8
Back to Result List

Ontogenetic and spatio-temporal patterns of induced volatiles in Glycine max in the light of the optimal defence hypothesis

Please always quote using this URN: urn:nbn:de:bvb:20-opus-26991
  • Plants attacked by herbivorous insects emit a blend of volatile compounds that serve as important host location cues for parasitoid wasps. Variability in the released blend may exist on the whole-plant and within-plant level and can affect the foraging efficiency of parasitoids. We comprehensively assessed the kinetics of herbivore-induced volatiles in soybean in the context of growth stage, plant organ, leaf age, and direction of signal transport. The observed patterns were used to test the predictions of the optimal defence hypothesis (OD).Plants attacked by herbivorous insects emit a blend of volatile compounds that serve as important host location cues for parasitoid wasps. Variability in the released blend may exist on the whole-plant and within-plant level and can affect the foraging efficiency of parasitoids. We comprehensively assessed the kinetics of herbivore-induced volatiles in soybean in the context of growth stage, plant organ, leaf age, and direction of signal transport. The observed patterns were used to test the predictions of the optimal defence hypothesis (OD). We found that plants in the vegetative stage emitted 10-fold more volatiles per biomass than reproductive plants and young leaves emitted >2.6 times more volatiles than old leaves. Systemic induction in single leaves was stronger and faster by one day in acropetal than in basipetal direction while no systemic induction was found in pods. Herbivore-damaged leaves had a 200-fold higher release rate than pods. To some extent these findings support the OD: i) indirect defence levels were increased in response to herbivory and ii) young leaves, which are more valuable, emitted more volatiles. However, the fact that reproductive structures emitted no constitutive or very few inducible volatiles is in seeming contrast to the OD predictions. We argue that in case of volatile emission the OD can only partially explain the patterns of defence allocation due to the peculiarity that volatiles act as signals not as toxins or repellents.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Michael Rostás, Katharina Eggert
URN:urn:nbn:de:bvb:20-opus-26991
Document Type:Journal article
Faculties:Fakultät für Biologie / Julius-von-Sachs-Institut für Biowissenschaften
Language:English
Year of Completion:2008
Source:Chemoecology (2008) 18:29-38
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
GND Keyword:Chemische Ökologie; Pflanzeninhaltsstoff; Verteidigung; Pflanzenfressende Insekten
Tag:Indirekte Abwehr; Sojabohne; Spodoptera frugiperda; Tritrophische Interaktionen
Spodoptera frugiperda; indirect plant defence; soybean; tritrophic interactions
Release Date:2008/04/17