• search hit 3 of 12
Back to Result List

Adiposity Related Brain Plasticity Induced by Bariatric Surgery

Please always quote using this URN: urn:nbn:de:bvb:20-opus-227168
  • Previous magnetic resonance imaging (MRI) studies revealed structural-functional brain reorganization 12 months after gastric-bypass surgery, encompassing cortical and subcortical regions of all brain lobes as well as the cerebellum. Changes in the mean of cluster-wise gray/white matter density (GMD/WMD) were correlated with the individual loss of body mass index (BMI), rendering the BMI a potential marker of widespread surgery-induced brain plasticity. Here, we investigated voxel-by-voxel associations between surgery-induced changes inPrevious magnetic resonance imaging (MRI) studies revealed structural-functional brain reorganization 12 months after gastric-bypass surgery, encompassing cortical and subcortical regions of all brain lobes as well as the cerebellum. Changes in the mean of cluster-wise gray/white matter density (GMD/WMD) were correlated with the individual loss of body mass index (BMI), rendering the BMI a potential marker of widespread surgery-induced brain plasticity. Here, we investigated voxel-by-voxel associations between surgery-induced changes in adiposity, metabolism and inflammation and markers of functional and structural neural plasticity. We re-visited the data of patients who underwent functional and structural MRI, 6 months (n = 27) and 12 months after surgery (n = 22), and computed voxel-wise regression analyses. Only the surgery-induced weight loss was significantly associated with brain plasticity, and this only for GMD changes. After 6 months, weight loss overlapped with altered GMD in the hypothalamus, the brain's homeostatic control site, the lateral orbitofrontal cortex, assumed to host reward and gustatory processes, as well as abdominal representations in somatosensory cortex. After 12 months, weight loss scaled with GMD changes in right cerebellar lobule VII, involved in language-related/cognitive processes, and, by trend, with the striatum, assumed to underpin (food) reward. These findings suggest time-dependent and weight-loss related gray matter plasticity in brain regions involved in the control of eating, sensory processing and cognitive functioning.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Michael Rullmann, Sven Preusser, Sindy Poppitz, Stefanie Heba, Konstantinos Gousias, Jana Hoyer, Tatjana Schütz, Arne Dietrich, Karsten Müller, Mohammed K. Hankir, Burkhard Pleger
URN:urn:nbn:de:bvb:20-opus-227168
Document Type:Journal article
Faculties:Medizinische Fakultät / Klinik und Poliklinik für Allgemein-, Viszeral-, Gefäß- und Kinderchirurgie (Chirurgische Klinik I)
Language:English
Parent Title (English):Froniers in Human Neuroscience
Year of Completion:2019
Volume:13
Article Number:290
Pagenumber:1-11
Source:Front. Hum. Neurosci. 13:290.
DOI:https://doi.org/10.3389/fnhum.2019.00290
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Tag:adiposity; bariatric surgery; brain plasticity; gastric-bypass surgery; magnetic resonance imaging
Release Date:2021/09/28
Licence (German):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung 4.0 International