Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 2 von 2
Zurück zur Trefferliste

A tissue-engineered humanized xenograft model of human breast cancer metastasis to bone

Zitieren Sie bitte immer diese URN: urn:nbn:de:bvb:20-opus-117466
  • The skeleton is a preferred homing site for breast cancer metastasis. To date, treatment options for patients with bone metastases are mostly palliative and the disease is still incurable. Indeed, key mechanisms involved in breast cancer osteotropism are still only partially understood due to the lack of suitable animal models to mimic metastasis of human tumor cells to a human bone microenvironment. In the presented study, we investigate the use of a human tissue-engineered bone construct to develop a humanized xenograft model of breastThe skeleton is a preferred homing site for breast cancer metastasis. To date, treatment options for patients with bone metastases are mostly palliative and the disease is still incurable. Indeed, key mechanisms involved in breast cancer osteotropism are still only partially understood due to the lack of suitable animal models to mimic metastasis of human tumor cells to a human bone microenvironment. In the presented study, we investigate the use of a human tissue-engineered bone construct to develop a humanized xenograft model of breast cancer-induced bone metastasis in a murine host. Primary human osteoblastic cell-seeded melt electrospun scaffolds in combination with recombinant human bone morphogenetic protein 7 were implanted subcutaneously in non-obese diabetic/severe combined immunodeficient mice. The tissue-engineered constructs led to the formation of a morphologically intact 'organ' bone incorporating a high amount of mineralized tissue, live osteocytes and bone marrow spaces. The newly formed bone was largely humanized, as indicated by the incorporation of human bone cells and human-derived matrix proteins. After intracardiac injection, the dissemination of luciferase-expressing human breast cancer cell lines to the humanized bone ossicles was detected by bioluminescent imaging. Histological analysis revealed the presence of metastases with clear osteolysis in the newly formed bone. Thus, human tissue-engineered bone constructs can be applied efficiently as a target tissue for human breast cancer cells injected into the blood circulation and replicate the osteolytic phenotype associated with breast cancer-induced bone lesions. In conclusion, we have developed an appropriate model for investigation of species-specific mechanisms of human breast cancer-related bone metastasis in vivo.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Autor(en): Laure Thibaudeau, Anna V. Taubenberger, Boris M. Holzapfel, Verena M. Quent, Tobias Fuehrmann, Parisa Hesami, Toby D. Brown, Paul D. Dalton, Carl A. Power, Brett G. Hollier, Dietmar W. Hutmacher
URN:urn:nbn:de:bvb:20-opus-117466
Dokumentart:Artikel / Aufsatz in einer Zeitschrift
Institute der Universität:Medizinische Fakultät / Lehrstuhl für Orthopädie
Sprache der Veröffentlichung:Englisch
Titel des übergeordneten Werkes / der Zeitschrift (Englisch):Disease Models & Mechanisms
Erscheinungsjahr:2014
Band / Jahrgang:7
Heft / Ausgabe:2
Seitenangabe:299-309
Originalveröffentlichung / Quelle:Disease Models & Mechanisms (2014) 7, 299-309 doi:10.1242/dmm.014076
DOI:https://doi.org/10.1242/dmm.014076
PubMed-ID:https://pubmed.ncbi.nlm.nih.gov/24713276
Allgemeine fachliche Zuordnung (DDC-Klassifikation):6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Freie Schlagwort(e):bone metastasis; breast cancer; calcium phosphate; endochondral ossification; human prostate-cancer; humanized xenograft model; in vivo; melt electrospinning; morphogenetic protein; mouse model; osteoprogenitor cells; osteotropism; skeletal metastases; stem-cell niche; tissue engineering; trabecular bone
Datum der Freischaltung:18.08.2015
Lizenz (Deutsch):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung