The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 1 of 25
Back to Result List

Modelling of Mesenchymal Stromal Cells Interactions within the Skeletal Niche

Modellierung der Interaktionen von Mesenchymalen Stromazellen in der skelettalen Nische

Please always quote using this URN: urn:nbn:de:bvb:20-opus-266603
  • Mesenchymal stem/stromal cells (MSCs) are a rare subpopulation of cells first identified in bone marrow with the potential to proliferate in plastic-adherent colonies and to generate de novo bone marrow stroma and its environment upon serial transplantation to heterotopic anatomical sites. Given their multipotency and self renewal competence, MSCs are prime prospective candidates for most modern musculoskeletal-tissue engineering and regenerative medicine approaches. Still, their envisioned therapeutic use is being questioned with concernsMesenchymal stem/stromal cells (MSCs) are a rare subpopulation of cells first identified in bone marrow with the potential to proliferate in plastic-adherent colonies and to generate de novo bone marrow stroma and its environment upon serial transplantation to heterotopic anatomical sites. Given their multipotency and self renewal competence, MSCs are prime prospective candidates for most modern musculoskeletal-tissue engineering and regenerative medicine approaches. Still, their envisioned therapeutic use is being questioned with concerns regarding their definition, characterization and integrative functions in vivo. It is well established that microenvironmental cues such as the extracellular matrix (ECM)-chemistry, the mechanical environment and local cellular and/or paracrine interactions critically control MSCs behavior. Yet, most of the scientific knowledge regarding the biology and therapeutic effect of MSCs originates from mechanistic in vitro studies where microenvironmental cues are hardly addressed. Therefore, manifestable changes in cell proliferation behavior and multilineage differentiation potential might be triggered that eventually compromise the translation of results to clinics. This thesis aims to address the complexity of MSCs interactions within the skeletal niche microenvironment in order to provide alternative methods to bypass the current MSCs in vitro culture limitations. Firstly, the influence of ECM-chemistry on MSCs behavior in vitro was explored by means of decellularized human bone models here established. Basal or osteogenic tailored cell-derived decellularized 2D matrices (dECM), proved to be suitable culture substrates for MSCs expansion by providing close-to-native cell-ECM interactions. Moreover, quantified morphological shape changes suggested a material osteo supportive potential, further functionally validated by observable spontaneous mineralization of MSCs. Aiming to identify novel intrinsic ECM regulatory features specific to the skeletal niche, 3D decellularized human trabecular bone scaffolds (dBone) were additionally developed and comprehensively characterized. Remarkably, the MSCs cultured on dBone scaffolds exhibit upregulation of genes associated with stemness as well as niche-related protein expression advocating for the conservation of the naïve MSCs phenotype. vi On the other hand, the effect of biomimetic mineralization on MSCs osteogenic lineage differentiation potential was further addressed by hydroxyapatite functionalization of type-I collagen in presence of magnesium. Mineralized scaffolds exhibited higher cell viability and a clear trend of osteogenic genes upregulation comparing with non-mineralized scaffolds. Lastly, in order to mimic the complexity of the native MSCs environment, a dynamic culture system was applied to the 3D decellularized bone constructs, previously studied in single static conditions. Mechanical stimuli generated by (1) continuous perfusion of cell culture medium at 1.7 mL/min and (2) compressive stress from 10% uniaxial load at 1 Hz, resulted in an improved cell repopulation within the scaffold and boosting of de novo ECM production. The stress-induced gene expression pattern suggested early MSCs commitment towards the osteogenic lineage mediated by integrin matrix adhesion, therefore further corroborating the recapitulation of a reliable in vitro bone niche model in dBone scaffolds. To conclude, the here developed in vitro models provide a progressive increased biomimicking complexity through which significant insights regarding MSC interactions with microenvironmental features in the skeletal niche can be obtained, thus surely paving the way for a better understanding of the role of MSCs in bone homeostasis and regeneration.show moreshow less
  • Mesenchymale Stamm-/Stromazellen (MSZ) sind eine seltene Subpopulation von Zellen, die erstmals im Knochenmark identifiziert wurden und die das Potenzial haben, sich in plastikadhärenten Kolonien zu vermehren und bei serieller Transplantation an heterotopen anatomischen Stellen de novo das Knochenmarkstroma und seine Umgebung zu bilden. Aufgrund ihrer Multipotenz und ihrer Fähigkeit zur Selbsterneuerung sind MSZ erstklassige Kandidaten für moderne Ansätze des muskuloskelettalem Gewebe-Engineering und der regenerativen Medizin. Dennoch wird ihrMesenchymale Stamm-/Stromazellen (MSZ) sind eine seltene Subpopulation von Zellen, die erstmals im Knochenmark identifiziert wurden und die das Potenzial haben, sich in plastikadhärenten Kolonien zu vermehren und bei serieller Transplantation an heterotopen anatomischen Stellen de novo das Knochenmarkstroma und seine Umgebung zu bilden. Aufgrund ihrer Multipotenz und ihrer Fähigkeit zur Selbsterneuerung sind MSZ erstklassige Kandidaten für moderne Ansätze des muskuloskelettalem Gewebe-Engineering und der regenerativen Medizin. Dennoch wird ihr therapeutischer Einsatz aufgrund von Bedenken hinsichtlich ihrer Definition, Charakterisierung und in vivo Integration in Frage gestellt. Es ist hinlänglich bekannt, dass die Mikroumgebung wie die Komposition der extrazellulären Matrix (EZM), die mechanische Umgebung und die lokalen zellulären und/oder parakrinen Interaktionen das Verhalten der MSZ entscheidend beeinflussen. Die meisten wissenschaftlichen Erkenntnisse über die Biologie und die therapeutische Wirkung von MSZ stammen jedoch aus mechanistischen In-vitro-Studien, in denen Faktoren aus der naiven Mikroumgebung von MSZ kaum berücksichtigt wurden. Dies kann zu offensichtlichen Veränderungen des Zellproliferationsverhaltens und des Differenzierungspotenzials der Zellen führen, was die Übertragung der Ergebnisse in die klinische Praxis beeinträchtigt. Diese Arbeit zielt darauf ab, die Komplexität der Interaktionen von MSZ in der Mikroumgebung der skelettalen Nische zu untersuchen, um Methoden zur Umgehung der derzeitigen Limitationen bei der In-vitro-Kultur von MSZ zu etablieren. Zunächst wurde der Einfluss der EZM auf das Verhalten von MSZ in vitro mit Hilfe von dezellularisierten menschlichen Knochenmodellen untersucht. Basale oder dezellularisierte 2D-Matrizen (dECM) osteogen differenzierter Zellen erwiesen sich als geeignete Zellkultursubstrate für die MSZ-Expansion, da sie nahezu native Zell-EZM-Interaktionen ermöglichen. Darüber hinaus deutet die quantifizierten morphologischen Formveränderungen in MSZ auf ein osteoinduktives Potenzial des Materials hin, was durch eine beobachtete spontane Mineralisierung der MSZ funktionell bestätigt wurde. Mit dem Ziel, neue intrinsische EZM-Faktoren zu identifizieren, die für die skelettale Nische spezifisch sind, wurden zusätzlich dezellularisierte 3D-Gerüste aus menschlichem trabekulärem Knochen (dBone) entwickelt und umfassend charakterisiert. Bemerkenswerterweise zeigen die auf dBone-Gerüsten kultivierten MSZ eine Hochregulierung von typischen Stammzell-assoziierten Genen, sowie die Expression von charakteristischen Nischenproteinen, was für die Erhaltung des Phänotyps naiver MSZ spricht. Andererseits wurde die Auswirkung einer biomimetischen Mineralisierung auf das osteogene Potenzial von MSZ durch Hydroxyapatit-Funktionalisierung von Typ-I-Kollagen Trägermaterialien in Gegenwart von Magnesium untersucht. Mineralisierte Gerüste zeigten eine höhere Zellviabilität und einen klaren Trend zur Hochregulierung osteogener Gene im Vergleich zu nicht-mineralisierten Gerüsten. Um die Komplexität der nativen MSZ-Umgebung zu imitieren, wurde schließlich ein dynamisches Kultursystem auf die dezellularisierten 3D-Knochenkonstrukte angewandt, die zuvor unter statischen Bedingungen untersucht worden waren. Mechanische Stimuli, die durch (1) kontinuierliche Perfusion des Zellkulturmediums bei 1,7 ml/min und (2) Druckbelastung durch eine einachsige Last von 10 % bei 1 Hz erzeugt wurden, führten nachweislich zu einer verbesserten Zellrepopulation innerhalb des Gerüsts und zu einer Steigerung der de novo EZM-Produktion. Das stressinduzierte Genexpressionsmuster deutet darauf hin, dass es schon früh durch Integrin-Matrix-Adhäsion zu einer Festlegung der MSZ auf die osteogene Linie kommt, was die Rekapitulation eines Zuverlässigen in vitro-Knochennischenmodells in dBone-Konstrukten weiter bestätigt. Zusammenfassend lässt sich sagen, dass die hier entwickelten in vitro-Modelle eine zunehmende Komplexität der zellulären Mikroumgebung darstellen, durch die wichtige Erkenntnisse über die Interaktionen von MSZ mit der Mikroumgebung in der Knochennische gewonnen werden können, was sicherlich den Weg für ein besseres Verständnis der Rolle von MSZ in der Knochenhomöostase und -regeneration ebnet.show moreshow less

Download full text files

Export metadata

Metadaten
Author: Ana Rita Oliveira Alves PereiraORCiDGND
URN:urn:nbn:de:bvb:20-opus-266603
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Graduate Schools
Faculties:Graduate Schools / Graduate School of Life Sciences
Referee:Dr. Marietta HerrmannORCiD, Prof. Dr. Franz Jakob, Prof. Dr. Jürgen Groll, Dr. Yuval Rinkevich
Date of final exam:2022/04/07
Language:English
Year of Completion:2022
DOI:https://doi.org/10.25972/OPUS-26660
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Tag:Bone regeneration; In vitro models; Stem Cells
Release Date:2022/04/25
Licence (German):License LogoCC BY-NC-SA: Creative-Commons-Lizenz: Namensnennung, Nicht kommerziell, Weitergabe unter gleichen Bedingungen 4.0 International