The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 1 of 21
Back to Result List

Fast molecular mobility of β\(_2\)-adrenergic receptor revealed by time-resolved fluorescence spectroscopy

Schnelle molekulare Beweglichkeit des β\(_2\)-adrenergen Rezeptors durch zeitaufgelöste Fluoreszenzspektroskopie

Please always quote using this URN: urn:nbn:de:bvb:20-opus-250856
  • G-protein- coupled receptors (GPCRs) are the largest family of membrane confined receptors and they transduce ligand binding to downstream effects. Almost 40% of the drugs in the world target GPCRs due to their function, albeit knowing less about their activation. Understanding their dynamic behaviour in basal and activated state could prove key to drug development in the future. GPCRs are known to exhibit complex molecular mobility patterns. A plethora of studies have been and are being conducted to understand the mobility of GPCRs. Due toG-protein- coupled receptors (GPCRs) are the largest family of membrane confined receptors and they transduce ligand binding to downstream effects. Almost 40% of the drugs in the world target GPCRs due to their function, albeit knowing less about their activation. Understanding their dynamic behaviour in basal and activated state could prove key to drug development in the future. GPCRs are known to exhibit complex molecular mobility patterns. A plethora of studies have been and are being conducted to understand the mobility of GPCRs. Due to limitations of imaging and spectroscopic techniques commonly used, the relevant timescales are hard to access. The most commonly used techniques are electron paramagnetic resonance or double electronelectron resonance, nuclear magnetic resonance, time-resolved fluorescence, single particle tracking and fluorescence recovery after photobleaching. Among these techniques only fluorescence has the potential to probe live cells. In this thesis, I use different time-resolved fluorescence spectroscopic techniques to quantify diffusion dynamics / molecular mobility of β2-adrenergic receptor (β2-AR) in live cells. The thesis shows that β2-AR exhibits mobility over an exceptionally broad temporal range (nanosecond to second) that can be linked to its respective physiological scenario. I explain how β2-AR possesses surprisingly fast lateral mobility (~10 μm²/s) associated with vesicular transport in contrast to the prior reports of it originating from fluorophore photophysics and free fluorophores in the cytosol. In addition, β2-AR has rotational mobility (~100 μs) that makes it conform to the Saffman-Delbrück model of membrane diffusion unlike earlier studies. These contrasts are due to the limitations of the methodologies used. The limitations are overcome in this thesis by using different time-resolved fluorescence techniques of fluorescence correlation spectroscopy (FCS), time-resolved anisotropy (TRA) and polarisation resolved fullFCS (fullFCS). FCS is limited to microsecond to the second range and TRA is limited to the nanosecond range. fullFCS complements the two techniques by covering the blind spot of FCS and TRA in the microsecond range. Finally, I show how ligand stimulation causes a decrease in lateral mobility which could be a hint at cluster formation due to internalisation and how β2-AR possesses a basal oligomerisation that does not change on activation. Thus, through this thesis, I show how different complementary fluorescence techniques are necessary to overcome limitations of each technique and to thereby elucidate functional dynamics of GPCR activation and how it orchestrates downstream signalling.show moreshow less
  • G¬Protein¬gekoppelte Rezeptoren (GPCRs) sind die größte Familie der Membran¬Rezeptoren und durch Bindung von Liganden leiten sie extrazlluläre Signal in das Innere der Zelle weiter. Fast 40% der Medikamente auf der Welt zielen aufgrund ihrer Funktion auf GPCRs ab, obwohl man relative wenig über ihre Aktivierung weiß. Das Verständnis ihres dynamischen Verhaltens im basalen und aktivierten Zustand könnte sich in Zukunft als Schlüssel zur Medikamentenentwicklung erweisen. GPCRs sind dafür bekannt, dass sie komplexe molekulare BewegungsmusterG¬Protein¬gekoppelte Rezeptoren (GPCRs) sind die größte Familie der Membran¬Rezeptoren und durch Bindung von Liganden leiten sie extrazlluläre Signal in das Innere der Zelle weiter. Fast 40% der Medikamente auf der Welt zielen aufgrund ihrer Funktion auf GPCRs ab, obwohl man relative wenig über ihre Aktivierung weiß. Das Verständnis ihres dynamischen Verhaltens im basalen und aktivierten Zustand könnte sich in Zukunft als Schlüssel zur Medikamentenentwicklung erweisen. GPCRs sind dafür bekannt, dass sie komplexe molekulare Bewegungsmuster aufweisen. Eine Fülle von Studien wurden und werden durchgeführt, um die Beweglichkeit von GPCRs zu verstehen. Aufgrund der Einschränkungen der gängigen bildgebenden und spektroskopischen Techniken sind die relevanten Zeitskalen nur schwer messbar. Die am häufigsten verwendeten Techniken sind die paramagnetische Elektronenresonanz oder die Doppel¬Elektron¬Elektron¬Resonanz, die magnetische Kernresonanz, die zeitaufgelöste Fluoreszenz, die Einzelpartikelverfolgung und die Fluoreszenzwiederherstellung nach Photobleichung. Unter diesen Techniken haben nur die Fluoreszenz¬basierten Techniken das Potential, lebende Zellen zu untersuchen. In dieser Arbeit werden verschiedene zeitaufgelöste fluoreszenzspektroskopische Techniken zur Quantifizierung der Diffusionsdynamik oder molekularen Mobilität des β2¬adrenergen Rezeptors (β2¬AR) in lebenden Zellen verwendet. Diese Arbeit zeigt, dass β2-AR eine Beweglichkeit über einen außergewöhnlich breiten, zeitlichen Bereich (Nanosekunde bis Sekunde) aufweist, der mit dem jeweiligen physiologischen Szenario verknüpft werden kann. Es wird gezeigt, wie β2¬AR eine überraschend schnelle, laterale Bewegung (~10 μm²/s) besitzt, welche mit vesikulärem Transport in Verbindung gebracht werden kann. Im Gegensatz zu früheren Berichten, wonach die beobachtete Komponente von der Photophysik der Fluorophore und freien Fluorophoren im Zytosol abstammt. Zusätzlich weist β2¬AR eine Rotationsbeweglichkeit (~100 μs) auf, welche es ¬ im Gegensatz zu früheren Studien ¬ dem Saffman¬Delbrück¬Modell der Membrandiffusion zuordnen lässt. Dieser Unterschied ist auf die Beschränkungen der verwendeten Techniken zurückzuführen. Die Einschränkungen werden in dieser Arbeit durch die Verwendung verschiedener zeitaufgelöster Fluoreszenztechniken überwunden, z. B. der Fluoreszenzkorrelationsspektroskopie (FCS) im Bereich von mehreren hundert Nanosekunden bis Sekunden, der zeitaufgelösten Anisotropie (TRA) im Nanosekundenbereich und der polarisationsaufgelösten FullFCS (FullFCS), die die zeitlich Lücke zwischen FCS und TRA schließt. Zuletzt wird eine Abnahme der lateralen Beweglichkeit durch Ligandenstimulation gezeigt, was ein Hinweis auf Clusterbildung aufgrund von Internalisierung sein könnte, und dass β2¬AR eine basale Oligomerisierung aufweist, die sich bei Aktivierung nicht ändert. Zusammenfassend kann man sagen, dass verschiedene komplementäre Fluoreszenztechniken notwendig sind, um die Einschränkungen der einzelnen Techniken zu überwinden und dadurch die funktionelle Dynamik der GPCR¬Aktivierung und deren Bedeutung für die nachgeschaltete Signalübertragung aufzuklären.show moreshow less

Download full text files

Export metadata

Metadaten
Author: Ashwin BalakrishnanORCiD
URN:urn:nbn:de:bvb:20-opus-250856
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Graduate Schools
Faculties:Graduate Schools / Graduate School of Life Sciences
Fakultät für Biologie / Rudolf-Virchow-Zentrum
Referee:Prof. Dr. Katrin G. HeinzeORCiD, Prof. Dr. Martin J. LohseORCiD, Prof. Dr. Antje GohlaORCiD
Date of final exam:2021/12/06
Language:English
Year of Completion:2021
DOI:https://doi.org/10.25972/OPUS-25085
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Tag:Fluorescence correlation spectroscopy; GPCR; adrenergic receptor; homoFRET; time-resolved anisotropy
Release Date:2021/12/20
Licence (German):License LogoCC BY-NC: Creative-Commons-Lizenz: Namensnennung, Nicht kommerziell 4.0 International