The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 9 of 38
Back to Result List

X-Ray Dark-Field Tensor Tomography : a Hitchhiker's Guide to Tomographic Reconstruction and Talbot Imaging

Röntgen-Dunkelfeld-Tensor-Tomographie : ein Handbuch zur Tomographischen Rekonstruktion und Talbot-Bildgebung

Please always quote using this URN: urn:nbn:de:bvb:20-opus-281437
  • X-ray dark-field imaging allows to resolve the conflict between the demand for centimeter scaled fields of view and the spatial resolution required for the characterization of fibrous materials structured on the micrometer scale. It draws on the ability of X-ray Talbot interferometers to provide full field images of a sample's ultra small angle scattering properties, bridging a gap of multiple orders of magnitude between the imaging resolution and the contrasted structure scale. The correspondence between shape anisotropy and orientedX-ray dark-field imaging allows to resolve the conflict between the demand for centimeter scaled fields of view and the spatial resolution required for the characterization of fibrous materials structured on the micrometer scale. It draws on the ability of X-ray Talbot interferometers to provide full field images of a sample's ultra small angle scattering properties, bridging a gap of multiple orders of magnitude between the imaging resolution and the contrasted structure scale. The correspondence between shape anisotropy and oriented scattering thereby allows to infer orientations within a sample's microstructure below the imaging resolution. First demonstrations have shown the general feasibility of doing so in a tomographic fashion, based on various heuristic signal models and reconstruction approaches. Here, both a verified model of the signal anisotropy and a reconstruction technique practicable for general imaging geometries and large tensor valued volumes is developed based on in-depth reviews of dark-field imaging and tomographic reconstruction techniques. To this end, a wide interdisciplinary field of imaging and reconstruction methodologies is revisited. To begin with, a novel introduction to the mathematical description of perspective projections provides essential insights into the relations between the tangible real space properties of cone beam imaging geometries and their technically relevant description in terms of homogeneous coordinates and projection matrices. Based on these fundamentals, a novel auto-calibration approach is developed, facilitating the practical determination of perspective imaging geometries with minimal experimental constraints. A corresponding generalized formulation of the widely employed Feldkamp algorithm is given, allowing fast and flexible volume reconstructions from arbitrary tomographic imaging geometries. Iterative reconstruction techniques are likewise introduced for general projection geometries, with a particular focus on the efficient evaluation of the forward problem associated with tomographic imaging. A highly performant 3D generalization of Joseph's classic linearly interpolating ray casting algorithm is developed to this end and compared to typical alternatives. With regard to the anisotropic imaging modality required for tensor tomography, X-ray dark-field contrast is extensively reviewed. Previous literature is brought into a joint context and nomenclature and supplemented by original work completing a consistent picture of the theory of dark-field origination. Key results are explicitly validated by experimental data with a special focus on tomography as well as the properties of anisotropic fibrous scatterers. In order to address the pronounced susceptibility of interferometric images to subtle mechanical imprecisions, an efficient optimization based evaluation strategy for the raw data provided by Talbot interferometers is developed. Finally, the fitness of linear tensor models with respect to the derived anisotropy properties of dark-field contrast is evaluated, and an iterative scheme for the reconstruction of tensor valued volumes from projection images is proposed. The derived methods are efficiently implemented and applied to fiber reinforced plastic samples, imaged at the ID19 imaging beamline of the European Synchrotron Radiation Facility. The results represent unprecedented demonstrations of X-ray dark-field tensor tomography at a field of view of 3-4cm, revealing local fiber orientations of both complex shaped and low-contrast samples at a spatial resolution of 0.1mm in 3D. The results are confirmed by an independent micro CT based fiber analysis.show moreshow less
  • Die Röntgen-Dunkelfeld-Bildgung vermag den Widerspruch zwischen dem Bedarf nach großen Sichtfeldern im Zentimeterbereich und der nötigen Bildauflösung zur Charakterisierung von Fasermaterialien mit Strukturgrößen im Mikrometerbereich aufzulösen. Sie bedient sich dafür der Eigenschaft von Röntgen-Talbot-Interferometern, Ultrakleinwinkelstreueigenschaften einer Probe vollflächig abzubilden, womit eine Lücke von mehreren Größenordnung zwischen der Bildauflösung und der konstrastgebenden Strukturgröße überbrückt werden kann. Der ZusammenhangDie Röntgen-Dunkelfeld-Bildgung vermag den Widerspruch zwischen dem Bedarf nach großen Sichtfeldern im Zentimeterbereich und der nötigen Bildauflösung zur Charakterisierung von Fasermaterialien mit Strukturgrößen im Mikrometerbereich aufzulösen. Sie bedient sich dafür der Eigenschaft von Röntgen-Talbot-Interferometern, Ultrakleinwinkelstreueigenschaften einer Probe vollflächig abzubilden, womit eine Lücke von mehreren Größenordnung zwischen der Bildauflösung und der konstrastgebenden Strukturgröße überbrückt werden kann. Der Zusammenhang zwischen Strukturanisotropie und gerichteter Streuung ermöglicht dabei Rückschlüsse auf die Orientierung der Mikrostruktur einer Probe unterhalb der Bildauflösung. Erste Demonstrationen haben, basiered auf verschiedenen heuristischen Signalmodellen und Rekonstruktrionsansätzen, die grundsätzliche Erweiterbarkeit auf die Volumen-Bildgebung gezeigt. In der vorliegenden Arbeit wird, aufbauend auf einer umfassenden Analyse der Dunkelfeld-Bildgebung und tomographischer Rekonstruktionsmethoden, sowohl ein verifiziertes Modell der Signalanisotropie als auch eine Rekonstruktionstechnik entwickelt, die für große tensorwertige Volumina und allgemeine Abbildungsgeometrien praktikabel ist. In diesem Sinne wird ein weites interdisziplinäres Feld von Bildgebungs- und Rekonstruktionsmethoden aufgearbeitet. Zunächst werden anhand einer neuen Einführung in die mathematische Beschreibung perspektivischer Projektionen essenzielle Einsichten in die Zusammenhänge zwischen der greifbaren Realraum-Darstellung der Kegelstrahl-Geometrie und ihrer technisch relevanten Beschreibung mittels homogener Koordinaten und Projektionsmatrizen gegeben. Aufbauend auf diesen Grundlagen wird eine neue Methode zur Auto-Kalibration entwickelt, die die praktische Bestimmung von perspektivischen Abbildungsgeometrien unter minimalen Anforderungen an die experimentelle Ausführung ermöglicht. Passend dazu wird eine verallgemeinerte Formulierung des weit verbreiteten Feldkamp-Algorithmus gegeben, um eine schnelle und flexible Volumenrekonstruktion aus beliebigen tomographischen Bildgebungsgeometrien zu ermöglichen. Iterative Rekonstruktionsverfahren werden ebenfalls für allgemeine Aufnahmegeometrien eingeführt, wobei ein Schwerpunkt auf der effizienten Berechnung des mit der tomographischen Bildgebung assoziierten Vorwärtsproblems liegt. Zu diesem Zweck wird eine hochperformante 3D-Erweiterung des klassischen, linear interpolierenden Linienintegrationsalgorithmus von Joseph entwickelt und mit typischen Alternativen verglichen. In Bezug auf die anisotrope Bildmodalität, die die Grundlage der Tensortomographie bildet, wird der Röntgen-Dunkelfeld-Kontrast umfassend besprochen. Die vorhandende Literatur wird dazu in einen gemeinsamen Kontext und eine gemeinsame Nomenklatur gebracht und mit neuen Überlegungen zu einer konsistenten Darstellung der Theorie zur Dunkelfeldsignalentstehung vervollständigt. Zentrale Ergebnisse werden dabei explizit anhand experimenteller Daten verifiziert, wobei besonders die Tomographie und die Eigenschaften anisotroper, faseriger Streuer im Vordergrund stehen. Um die ausgeprägte Empfindlichkeit interferometrischer Bilder auf feinste mechanische Instabilitäten zu kompensieren, wird ein effizientes Optimierungsverfahren zur Auswertung der Rohdaten aus Talbot-Interferometern entwickelt. Schließlich wird die Anwendbarkeit von linearen Tensor-Modellen in Bezug auf die hergeleiteten Anisotropie-Eigenschaften des Dunkelfeld-Kontrastes diskutiert, und ein iteratives Verfahren für die Rekonstruktion tensorwertiger Volumen aus Projektionsbildern vorgeschlagen. Die entwickelten Methoden werden effizient implementiert und auf Proben aus faserverstärktem Kunstoff angewandt, die dafür an der Bildgebungs-Strahllinie ID19 des Europäischen Synchrotrons ESRF abgebildet wurden. Die Ergebnisse stellen eine bisher einmalige Demonstration von Röntgen-Dunkelfeld-Tensor-Tomographie mit einem Sichtfeld von 3-4cm dar, wobei lokale Faserorientierung sowohl für komplex geformte als auch kontrastarme Objekte mit einer räumlichen Auflösung von 0.1mm in 3D dargestellt werden kann. Ein unabhängiger Vergleich mit Mikro-CT basierter Faser-Analyse bestätigt die Ergebnisse.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Jonas Graetz [geb. Dittmann]ORCiDGND
URN:urn:nbn:de:bvb:20-opus-281437
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Physik und Astronomie
Faculties:Fakultät für Physik und Astronomie / Physikalisches Institut
Referee:Prof. Dr. Randolf Hanke, Prof. Dr. Peter Jakob, Prof. Dr. Thorsten M. Buzug
Date of final exam:2022/04/08
Language:English
Year of Completion:2022
DOI:https://doi.org/10.25972/OPUS-28143
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
GND Keyword:Dreidimensionale Rekonstruktion; Tomografie; Faserorientierung; Tensor; Bildgebendes Verfahren
Tag:Fiber Orientation; Tensor Tomography; Volume Reconstruction; X-Ray Dark-Field
CCS-Classification:I. Computing Methodologies
PACS-Classification:80.00.00 INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY
Release Date:2022/08/03
Licence (German):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung 4.0 International