• search hit 1 of 75
Back to Result List

Wireless LAN performance studies in the context of 4G networks

Please always quote using this URN: urn:nbn:de:bvb:20-opus-14896
  • Wireless communication is nothing new. The first data transmissions based on electromagnetic waves have been successfully performed at the end of the 19th century. However, it took almost another century until the technology was ripe for mass market. The first mobile communication systems based on the transmission of digital data were introduced in the late 1980s. Within just a couple of years they have caused a revolution in the way people communicate. The number of cellular phones started to outnumber the fixed telephone lines in manyWireless communication is nothing new. The first data transmissions based on electromagnetic waves have been successfully performed at the end of the 19th century. However, it took almost another century until the technology was ripe for mass market. The first mobile communication systems based on the transmission of digital data were introduced in the late 1980s. Within just a couple of years they have caused a revolution in the way people communicate. The number of cellular phones started to outnumber the fixed telephone lines in many countries and is still rising. New technologies in 3G systems, such as UMTS, allow higher data rates and support various kinds of multimedia services. Nevertheless, the end of the road in wireless communication is far from being reached. In the near future, the Internet and cellular phone systems are expected to be integrated to a new form of wireless system. Bandwidth requirements for a rich set of wireless services, e.g.\ video telephony, video streaming, online gaming, will be easily met. The transmission of voice data will just be another IP based service. On the other hand, building such a system is by far not an easy task. The problems in the development of the UMTS system showed the high complexity of wireless systems with support for bandwidth-hungry, IP-based services. But the technological challenges are just one difficulty. Telecommunication systems are planned on a world-wide basis, such that standard bodies, governments, institutions, hardware vendors, and service providers have to find agreements and compromises on a number of different topics. In this work, we provide the reader with a discussion of many of the topics involved in the planning of a Wireless LAN system that is capable of being integrated into the 4th generation mobile networks (4G) that is being discussed nowadays. Therefore, it has to be able to cope with interactive voice and video traffic while still offering high data rates for best effort traffic. Let us assume a scenario where a huge office complex is completely covered with Wireless LAN access points. Different antenna systems are applied in order to reduce the number of access points that are needed on the one hand, while optimizing the coverage on the other. No additional infrastructure is implemented. Our goal is to evaluate whether the Wireless LAN technology is capable of dealing with the various demands of such a scenario. First, each single access point has to be capable of supporting best-effort and Quality of Service (QoS) demanding applications simultaneously. The IT infrastructure in our scenario consists solely of Wireless LAN, such that it has to allow users surfing the Web, while others are involved in voice calls or video conferences. Then, there is the problem of overlapping cells. Users attached to one access point produce interference for others. However, the QoS support has to be maintained, which is not an easy task. Finally, there are nomadic users, which roam from one Wireless LAN cell to another even during a voice call. There are mechanisms in the standard that allow for mobility, but their capabilities for QoS support are yet to be studied. This shows the large number of unresolved issues when it comes to Wireless LAN in the context of 4G networks. In this work we want to tackle some of the problems.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Klaus Heck
URN:urn:nbn:de:bvb:20-opus-14896
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Mathematik und Informatik
Faculties:Fakultät für Mathematik und Informatik / Institut für Informatik
Date of final exam:2005/07/13
Language:English
Year of Completion:2005
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
GND Keyword:Drahtloses lokales Netz
Tag:4G Networks; IEEE 802.11e; Quality-of-Service (QoS); Voice-over-IP (VoIP); Wireless LAN
4G Networks; IEEE 802.11e; Quality-of-Service (QoS); Voice-over-IP (VoIP); Wireless LAN
Release Date:2005/10/10
Advisor:Prof. Dr. Phuoc Tran-Gia