• search hit 1 of 1
Back to Result List

Performance Models for UMTS 3.5G Mobile Wireless Systems

Leistungsmodelle für UMTS 3.5G Mobilfunksysteme

Please always quote using this URN: urn:nbn:de:bvb:20-opus-32525
  • Mobile telecommunication systems of the 3.5th generation (3.5G) constitute a first step towards the requirements of an all-IP world. As the denotation suggests, 3.5G systems are not completely new designed from scratch. Instead, they are evolved from existing 3G systems like UMTS or cdma2000. 3.5G systems are primarily designed and optimized for packet-switched best-effort traffic, but they are also intended to increase system capacity by exploiting available radio resources more efficiently. Systems based on cdma2000 are enhanced with 1xEV-DOMobile telecommunication systems of the 3.5th generation (3.5G) constitute a first step towards the requirements of an all-IP world. As the denotation suggests, 3.5G systems are not completely new designed from scratch. Instead, they are evolved from existing 3G systems like UMTS or cdma2000. 3.5G systems are primarily designed and optimized for packet-switched best-effort traffic, but they are also intended to increase system capacity by exploiting available radio resources more efficiently. Systems based on cdma2000 are enhanced with 1xEV-DO (EV-DO: evolution, data-optimized). In the UMTS domain, the 3G partnership project (3GPP) specified the High Speed Packet Access (HSPA) family, consisting of High Speed Downlink Packet Access (HSDPA) and its counterpart High Speed Uplink Packet Access (HSUPA) or Enhanced Uplink. The focus of this monograph is on HSPA systems, although the operation principles of other 3.5G systems are similar. One of the main contributions of our work are performance models which allow a holistic view on the system. The models consider user traffic on flow-level, such that only on significant changes of the system state a recalculation of parameters like bandwidth is necessary. The impact of lower layers is captured by stochastic models. This approach combines accurate modeling and the ability to cope with computational complexity. Adopting this approach to HSDPA, we develop a new physical layer abstraction model that takes radio resources, scheduling discipline, radio propagation and mobile device capabilities into account. Together with models for the calculation of network-wide interference and transmit powers, a discrete-event simulation and an analytical model based on a queuing-theoretical approach are proposed. For the Enhanced Uplink, we develop analytical models considering independent and correlated other-cell interference.show moreshow less
  • Die vorliegende Arbeit beschäftigt sich mit Mobilfunksystemen der Generation 3.5 im Allgemeinen, und mit den UMTS-spezifischen Ausprägungen HSDPA (High Speed Downlink Packet Access) und HSUPA (High Speed Uplink Packet Access) bzw. Enhanced Uplink im speziellen. Es werden integrierte Systeme betrachtet, d.h. 3.5G Datenkanäle koexistieren mit "klassischen" UMTS Datenkanälen wie in den Spezifikationen von UMTS Release ´99 beschrieben.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Andreas Mäder
URN:urn:nbn:de:bvb:20-opus-32525
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Mathematik und Informatik
Faculties:Fakultät für Mathematik und Informatik / Institut für Informatik
Date of final exam:2008/07/25
Language:English
Year of Completion:2008
Series (Serial Number):Würzburger Beiträge zur Leistungsbewertung Verteilter Systeme (02/08)
DOI:https://doi.org/10.25972/OPUS-2766
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
GND Keyword:Mobilfunk; Leistungsbewertung
Tag:Funkressourcenverwaltung; HSPA; Modellierungstechniken; Netzwerkplanung; UMTS
HSPA; UMTS; modeling techniques; network planning; radio resource management
CCS-Classification:C. Computer Systems Organization / C.4 PERFORMANCE OF SYSTEMS
C. Computer Systems Organization / C.2 COMPUTER-COMMUNICATION NETWORKS / C.2.1 Network Architecture and Design
Release Date:2009/02/18
Advisor:Prof. Dr.-Ing. Phuoc Tran-Gia