• search hit 1 of 1
Back to Result List

Hypotonic Activation of the Myo-Inositol Transporter SLC5A3 in HEK293 Cells Probed by Cell Volumetry, Confocal and Super-Resolution Microscopy

Please always quote using this URN: urn:nbn:de:bvb:20-opus-126408
  • Swelling-activated pathways for myo-inositol, one of the most abundant organic osmolytes in mammalian cells, have not yet been identified. The present study explores the SLC5A3 protein as a possible transporter of myo-inositol in hyponically swollen HEK293 cells. To address this issue, we examined the relationship between the hypotonicity-induced changes in plasma membrane permeability to myo-inositol Pino [m/s] and expression/localization of SLC5A3. Pino values were determined by cell volumetry over a wide tonicity range (100–275 mOsm) inSwelling-activated pathways for myo-inositol, one of the most abundant organic osmolytes in mammalian cells, have not yet been identified. The present study explores the SLC5A3 protein as a possible transporter of myo-inositol in hyponically swollen HEK293 cells. To address this issue, we examined the relationship between the hypotonicity-induced changes in plasma membrane permeability to myo-inositol Pino [m/s] and expression/localization of SLC5A3. Pino values were determined by cell volumetry over a wide tonicity range (100–275 mOsm) in myo-inositol-substituted solutions. While being negligible under mild hypotonicity (200–275 mOsm), Pino grew rapidly at osmolalities below 200 mOsm to reach a maximum of ∼3 nm/s at 100–125 mOsm, as indicated by fast cell swelling due to myo-inositol influx. The increase in Pino resulted most likely from the hypotonicity-mediated incorporation of cytosolic SLC5A3 into the plasma membrane, as revealed by confocal fluorescence microscopy of cells expressing EGFP-tagged SLC5A3 and super-resolution imaging of immunostained SLC5A3 by direct stochastic optical reconstruction microscopy (dSTORM). dSTORM in hypotonic cells revealed a surface density of membrane-associated SLC5A3 proteins of 200–2000 localizations/μm2. Assuming SLC5A3 to be the major path for myo-inositol, a turnover rate of 80–800 myo-inositol molecules per second for a single transporter protein was estimated from combined volumetric and dSTORM data. Hypotonic stress also caused a significant upregulation of SLC5A3 gene expression as detected by semiquantitative RT-PCR and Western blot analysis. In summary, our data provide first evidence for swelling-mediated activation of SLC5A3 thus suggesting a functional role of this transporter in hypotonic volume regulation of mammalian cells.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Joseph Andronic, Ryo Shirakashi, Simone U. Pickel, Katherine M. Westerling, Teresa Klein, Thorge Holm, Markus Sauer, Vladimir L. Sukhorukov
URN:urn:nbn:de:bvb:20-opus-126408
Document Type:Journal article
Faculties:Fakultät für Biologie / Theodor-Boveri-Institut für Biowissenschaften
Language:English
Parent Title (English):PLoS One
Year of Completion:2015
Volume:10
Issue:3
Source:PLoS ONE 10(3): e0119990. doi:10.1371/journal.pone.0119990
DOI:https://doi.org/10.1371/journal.pone.0119990
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Tag:cell membranes; electrolytes; hypotonic; hypotonic solutions; isotonic; membrane proteins; permeability; tonicity
Release Date:2016/02/01
Collections:Open-Access-Publikationsfonds / Förderzeitraum 2015
Licence (German):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung