• search hit 3 of 18
Back to Result List

Using Machine Learning Algorithms for Categorizing Quranic Chaptersby Major Phases of Prophet Mohammad’s Messengership

Please always quote using this URN: urn:nbn:de:bvb:20-opus-66862
  • This paper discusses the categorization of Quranic chapters by major phases of Prophet Mohammad’s messengership using machine learning algorithms. First, the chapters were categorized by places of revelation using Support Vector Machine and naïve Bayesian classifiers separately, and their results were compared to each other, as well as to the existing traditional Islamic and western orientalists classifications. The chapters were categorized into Meccan (revealed in Mecca) and Medinan (revealed in Medina). After that, chapters of each categoryThis paper discusses the categorization of Quranic chapters by major phases of Prophet Mohammad’s messengership using machine learning algorithms. First, the chapters were categorized by places of revelation using Support Vector Machine and naïve Bayesian classifiers separately, and their results were compared to each other, as well as to the existing traditional Islamic and western orientalists classifications. The chapters were categorized into Meccan (revealed in Mecca) and Medinan (revealed in Medina). After that, chapters of each category were clustered using a kind of fuzzy-single linkage clustering approach, in order to correspond to the major phases of Prophet Mohammad’s life. The major phases of the Prophet’s life were manually derived from the Quranic text, as well as from the secondary Islamic literature e.g hadiths, exegesis. Previous studies on computing the places of revelation of Quranic chapters relied heavily on features extracted from existing background knowledge of the chapters. For instance, it is known that Meccan chapters contain mostly verses about faith and related problems, while Medinan ones encompass verses dealing with social issues, battles…etc. These features are by themselves insufficient as a basis for assigning the chapters to their respective places of revelation. In fact, there are exceptions, since some chapters do contain both Meccan and Medinan features. In this study, features of each category were automatically created from very few chapters, whose places of revelation have been determined through identification of historical facts and events such as battles, migration to Medina…etc. Chapters having unanimously agreed places of revelation were used as the initial training set, while the remaining chapters formed the testing set. The classification process was made recursive by regularly augmenting the training set with correctly classified chapters, in order to classify the whole testing set. Each chapter was preprocessed by removing unimportant words, stemming, and representation with vector space model. The result of this study shows that, the two classifiers have produced useable results, with an outperformance of the support vector machine classifier. This study indicates that, the proposed methodology yields encouraging results for arranging Quranic chapters by phases of Prophet Mohammad’s messengership.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Mohamadou Nassourou
URN:urn:nbn:de:bvb:20-opus-66862
Document Type:Preprint
Faculties:Philosophische Fakultät II (bis Sept. 2007) / Institut für deutsche Philologie
Language:English
Year of Completion:2011
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
GND Keyword:Koran; Maschinelles Lernen
Tag:Clustering; Naïve Bayesian; Place of revelation; Quran; Stages of Prophet Mohammad’s messengership; Support Vector Machine; Text categorization
Release Date:2012/01/02
Licence (German):License LogoDeutsches Urheberrecht