• search hit 4 of 73
Back to Result List

Aktivitätsbasierte Verhaltensmodellierung und ihre Unterstützung bei Multiagentensimulationen

"Activity"-based Modelling of Behaviour and its Support for Multi-Agent Simulation

Please always quote using this URN: urn:nbn:de:bvb:20-opus-2874
  • Durch Zusammenführung traditioneller Methoden zur individuenbasierten Simulation und dem Konzept der Multiagentensysteme steht mit der Multiagentensimulation eine Methodik zur Verfügung, die es ermöglicht, sowohl technisch als auch konzeptionell eine neue Ebene an Detaillierung bei Modellbildung und Simulation zu erreichen. Ein Modell beruht dabei auf dem Konzept einer Gesellschaft: Es besteht aus einer Menge interagierender, aber in ihren Entscheidungen autonomen Einheiten, den Agenten. Diese ändern durch ihre Aktionen ihre Umwelt undDurch Zusammenführung traditioneller Methoden zur individuenbasierten Simulation und dem Konzept der Multiagentensysteme steht mit der Multiagentensimulation eine Methodik zur Verfügung, die es ermöglicht, sowohl technisch als auch konzeptionell eine neue Ebene an Detaillierung bei Modellbildung und Simulation zu erreichen. Ein Modell beruht dabei auf dem Konzept einer Gesellschaft: Es besteht aus einer Menge interagierender, aber in ihren Entscheidungen autonomen Einheiten, den Agenten. Diese ändern durch ihre Aktionen ihre Umwelt und reagieren ebenso auf die für sie wahrnehmbaren Änderungen in der Umwelt. Durch die Simulation jedes Agenten zusammen mit der Umwelt, in der er "lebt", wird die Dynamik im Gesamtsystem beobachtbar. In der vorliegenden Dissertation wurde ein Repräsentationsschema für Multiagentensimulationen entwickelt werden, das es Fachexperten, wie zum Beispiel Biologen, ermöglicht, selbständig ohne traditionelles Programmieren Multiagentenmodelle zu implementieren und mit diesen Experimente durchzuführen. Dieses deklarative Schema beruht auf zwei Basiskonzepten: Der Körper eines Agenten besteht aus Zustandsvariablen. Das Verhalten des Agenten kann mit Regeln beschrieben werden. Ausgehend davon werden verschiedene Strukturierungsansätze behandelt. Das wichtigste Konzept ist das der "Aktivität", einer Art "Verhaltenszustand": Während der Agent in einer Aktivität A verweilt, führt er die zugehörigen Aktionen aus und dies solange, bis eine Regel feuert, die diese Aktivität beendet und eine neue Aktivität auswählt. Durch Indizierung dieser Regeln bei den zugehörigen Aktivitäten und Einführung von abstrakten Aktivitäten entsteht ein Schema für eine vielfältig strukturierbare Verhaltensbeschreibung. Zu diesem Schema wurde ein Interpreter entwickelt, der ein derartig repräsentiertes Modell ausführt und so Simulationsexperimente mit dem Multiagentenmodell erlaubt. Auf dieser Basis wurde die Modellierungs- und Experimentierumgebung SeSAm ("Shell für Simulierte Agentensysteme") entwickelt. Sie verwendet vorhandene Konzepte aus dem visuellen Programmieren. Mit dieser Umgebung wurden Anwendungsmodelle aus verschiedenen Domänen realisiert: Neben abstrakten Spielbeispielen waren dies vor allem Fragestellungen zu sozialen Insekten, z.B. zum Verhalten von Ameisen, Bienen oder der Interaktion zwischen Bienenvölkern und Milbenpopulationen.show moreshow less
  • In this thesis a representational scheme for multi-agent simulations was developed. This framework enables domain experts - e.g. biologists - to build models and carry out experiments without having to understand and use traditional programming languages. The resulting declarative framework is based on two concepts: the body of an agent can be modelled by a set of state variables. The behaviour of the agents can be described best by using rules. With this as a starting point various approaches for structuring the description are examined. TheIn this thesis a representational scheme for multi-agent simulations was developed. This framework enables domain experts - e.g. biologists - to build models and carry out experiments without having to understand and use traditional programming languages. The resulting declarative framework is based on two concepts: the body of an agent can be modelled by a set of state variables. The behaviour of the agents can be described best by using rules. With this as a starting point various approaches for structuring the description are examined. The most important concept is the concept of "activity" - a kind of "behavioural state": While the agent is in a certain activity A, it carries out the sequence of actions that is associated with A - and continues with it until a rule fires thus terminating the activity A and selecting a new one. By indexing these rules at the activity they are terminating and by introducing abstract activities, a framework for behaviour modelling emerges that can be structured in multifarious ways. An interpreter executing this representation scheme was developed in order to allow simulation experiments with such a multi-agent model. This simulator was integrated into a modelling and simulation environment, named SeSAm ("Shell for Simulated Agent-Systems"). Using this framework several models in different application domains are implemented: They are ranging from simple games to complex models, especially of social insects - e.g. the behaviour of ants or bees or the interactions between bee hives and mite populations.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Franziska Klügl
URN:urn:nbn:de:bvb:20-opus-2874
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Mathematik und Informatik
Faculties:Fakultät für Mathematik und Informatik / Institut für Informatik
Date of final exam:2000/08/01
Language:German
Year of Completion:2000
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
GND Keyword:Agent <Informatik>; Simulation; Computersimulation; Mehragentensystem
Tag:Modellierung; Multiagentensystem; Regelbasiertes System; Simulation
Modelling; Multi-agent system; Rule-based Systems; Simulation
Release Date:2002/09/02
Advisor:Prof. Dr. Frank Puppe