• search hit 2 of 507
Back to Result List

Low-pressure micro-mechanical re-adaptation device sustainably and effectively improves locomotor recovery from complete spinal cord injury

Please always quote using this URN: urn:nbn:de:bvb:20-opus-227357
  • Traumatic spinal cord injuries result in impairment or even complete loss of motor, sensory and autonomic functions. Recovery after complete spinal cord injury is very limited even in animal models receiving elaborate combinatorial treatments. Recently, we described an implantable microsystem (microconnector) for low-pressure re-adaption of severed spinal stumps in rat. Here we investigate the long-term structural and functional outcome following microconnector implantation after complete spinal cord transection. Re-adaptation of spinal stumpsTraumatic spinal cord injuries result in impairment or even complete loss of motor, sensory and autonomic functions. Recovery after complete spinal cord injury is very limited even in animal models receiving elaborate combinatorial treatments. Recently, we described an implantable microsystem (microconnector) for low-pressure re-adaption of severed spinal stumps in rat. Here we investigate the long-term structural and functional outcome following microconnector implantation after complete spinal cord transection. Re-adaptation of spinal stumps supports formation of a tissue bridge, glial and vascular cell invasion, motor axon regeneration and myelination, resulting in partial recovery of motor-evoked potentials and a thus far unmet improvement of locomotor behaviour. The recovery lasts for at least 5 months. Despite a late partial decline, motor recovery remains significantly superior to controls. Our findings demonstrate that microsystem technology can foster long-lasting functional improvement after complete spinal injury, providing a new and effective tool for combinatorial therapies.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Veronica Estrada, Julia Krebbers, Christian Voss, Nicole Brazda, Heinrich Blazyca, Jennifer Illgen, Klaus Seide, Christian Jürgens, Jörg Müller, Rudolf Martini, Hoc Khiem Trieu, Hans Werner Müller
URN:urn:nbn:de:bvb:20-opus-227357
Document Type:Journal article
Faculties:Medizinische Fakultät / Neurologische Klinik und Poliklinik
Language:English
Parent Title (English):Communications Biology
Year of Completion:2018
Volume:1
Article Number:205
Source:Communications Biology (2018) 1:205. https://doi.org/10.1038/s42003-018-0210-8
DOI:https://doi.org/10.1038/s42003-018-0210-8
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Tag:implants; preclinical research; spinal cord injury
Release Date:2024/06/14
Licence (German):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung 4.0 International