The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 8 of 66
Back to Result List

Bioactive brominated oxindole alkaloids from the Red Sea sponge Callyspongia siphonella

Please always quote using this URN: urn:nbn:de:bvb:20-opus-201485
  • In the present study, LC-HRESIMS-assisted dereplication along with bioactivity-guided isolation led to targeting two brominated oxindole alkaloids (compounds 1 and 2) which probably play a key role in the previously reported antibacterial, antibiofilm, and cytotoxicity of Callyspongia siphonella crude extracts. Both metabolites showed potent antibacterial activity against Gram-positive bacteria, Staphylococcus aureus (minimum inhibitory concentration (MIC) = 8 and 4 µg/mL) and Bacillus subtilis (MIC = 16 and 4 µg/mL), respectively. Furthermore,In the present study, LC-HRESIMS-assisted dereplication along with bioactivity-guided isolation led to targeting two brominated oxindole alkaloids (compounds 1 and 2) which probably play a key role in the previously reported antibacterial, antibiofilm, and cytotoxicity of Callyspongia siphonella crude extracts. Both metabolites showed potent antibacterial activity against Gram-positive bacteria, Staphylococcus aureus (minimum inhibitory concentration (MIC) = 8 and 4 µg/mL) and Bacillus subtilis (MIC = 16 and 4 µg/mL), respectively. Furthermore, they displayed moderate biofilm inhibitory activity in Pseudomonas aeruginosa (49.32% and 41.76% inhibition, respectively), and moderate in vitro antitrypanosomal activity (13.47 and 10.27 µM, respectively). In addition, they revealed a strong cytotoxic effect toward different human cancer cell lines, supposedly through induction of necrosis. This study sheds light on the possible role of these metabolites (compounds 1 and 2) in keeping fouling organisms away from the sponge outer surface, and the possible applications of these defensive molecules in the development of new anti-infective agents.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Seham S. El-Hawary, Ahmed M. Sayed, Rabab Mohammed, Hossam M. Hassan, Mostafa E. Rateb, Elham Amin, Tarek A. Mohammed, Mohamed El-Mesery, Abdullatif Bin Muhsinah, Abdulrhman Alsayari, Harald Wajant, Mohamed A. Anany, Usama Ramadan Abdelmohsen
URN:urn:nbn:de:bvb:20-opus-201485
Document Type:Journal article
Faculties:Medizinische Fakultät / Abteilung für Molekulare Innere Medizin (in der Medizinischen Klinik und Poliklinik II)
Language:English
Parent Title (English):Marine Drugs
Year of Completion:2019
Volume:17
Issue:8
Pagenumber:465
Source:Marine Drugs 2019, 17(8), 465; https://doi.org/10.3390/md17080465
DOI:https://doi.org/10.3390/md17080465
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Tag:Callyspongia siphonella; LC-HRESIMS; antibacterial; antibiofilm; anticancer; antitrypanosomal; metabolomic profiling; oxindole alkaloids; tisindoline
Release Date:2020/03/19
Collections:Open-Access-Publikationsfonds / Förderzeitraum 2019
Licence (German):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung 4.0 International