The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 2 of 13
Back to Result List

Prescriptive Analytics for Data-driven Capacity Management

Prescriptive Analytics für datengetriebenes Kapazitätsmanagement

Please always quote using this URN: urn:nbn:de:bvb:20-opus-240423
  • Digitization and artificial intelligence are radically changing virtually all areas across business and society. These developments are mainly driven by the technology of machine learning (ML), which is enabled by the coming together of large amounts of training data, statistical learning theory, and sufficient computational power. This technology forms the basis for the development of new approaches to solve classical planning problems of Operations Research (OR): prescriptive analytics approaches integrate ML prediction and OR optimizationDigitization and artificial intelligence are radically changing virtually all areas across business and society. These developments are mainly driven by the technology of machine learning (ML), which is enabled by the coming together of large amounts of training data, statistical learning theory, and sufficient computational power. This technology forms the basis for the development of new approaches to solve classical planning problems of Operations Research (OR): prescriptive analytics approaches integrate ML prediction and OR optimization into a single prescription step, so they learn from historical observations of demand and a set of features (co-variates) and provide a model that directly prescribes future decisions. These novel approaches provide enormous potential to improve planning decisions, as first case reports showed, and, consequently, constitute a new field of research in Operations Management (OM). First works in this new field of research have studied approaches to solving comparatively simple planning problems in the area of inventory management. However, common OM planning problems often have a more complex structure, and many of these complex planning problems are within the domain of capacity planning. Therefore, this dissertation focuses on developing new prescriptive analytics approaches for complex capacity management problems. This dissertation consists of three independent articles that develop new prescriptive approaches and use these to solve realistic capacity planning problems. The first article, “Prescriptive Analytics for Flexible Capacity Management”, develops two prescriptive analytics approaches, weighted sample average approximation (wSAA) and kernelized empirical risk minimization (kERM), to solve a complex two-stage capacity planning problem that has been studied extensively in the literature: a logistics service provider sorts daily incoming mail items on three service lines that must be staffed on a weekly basis. This article is the first to develop a kERM approach to solve a complex two-stage stochastic capacity planning problem with matrix-valued observations of demand and vector-valued decisions. The article develops out-of-sample performance guarantees for kERM and various kernels, and shows the universal approximation property when using a universal kernel. The results of the numerical study suggest that prescriptive analytics approaches may lead to significant improvements in performance compared to traditional two-step approaches or SAA and that their performance is more robust to variations in the exogenous cost parameters. The second article, “Prescriptive Analytics for a Multi-Shift Staffing Problem”, uses prescriptive analytics approaches to solve the (queuing-type) multi-shift staffing problem (MSSP) of an aviation maintenance provider that receives customer requests of uncertain number and at uncertain arrival times throughout each day and plans staff capacity for two shifts. This planning problem is particularly complex because the order inflow and processing are modelled as a queuing system, and the demand in each day is non-stationary. The article addresses this complexity by deriving an approximation of the MSSP that enables the planning problem to be solved using wSAA, kERM, and a novel Optimization Prediction approach. A numerical evaluation shows that wSAA leads to the best performance in this particular case. The solution method developed in this article builds a foundation for solving queuing-type planning problems using prescriptive analytics approaches, so it bridges the “worlds” of queuing theory and prescriptive analytics. The third article, “Explainable Subgradient Tree Boosting for Prescriptive Analytics in Operations Management” proposes a novel prescriptive analytics approach to solve the two capacity planning problems studied in the first and second articles that allows decision-makers to derive explanations for prescribed decisions: Subgradient Tree Boosting (STB). STB combines the machine learning method Gradient Boosting with SAA and relies on subgradients because the cost function of OR planning problems often cannot be differentiated. A comprehensive numerical analysis suggests that STB can lead to a prescription performance that is comparable to that of wSAA and kERM. The explainability of STB prescriptions is demonstrated by breaking exemplary decisions down into the impacts of individual features. The novel STB approach is an attractive choice not only because of its prescription performance, but also because of the explainability that helps decision-makers understand the causality behind the prescriptions. The results presented in these three articles demonstrate that using prescriptive analytics approaches, such as wSAA, kERM, and STB, to solve complex planning problems can lead to significantly better decisions compared to traditional approaches that neglect feature data or rely on a parametric distribution estimation.show moreshow less
  • Digitalisierung und künstliche Intelligenz führen zu enormen Veränderungen in nahezu allen Bereichen von Wirtschaft und Gesellschaft. Grundlegend für diese Veränderungen ist die Technologie des maschinellen Lernens (ML), ermöglicht durch ein Zusammenspiel großer Datenmengen, geeigneter Algorithmen und ausreichender Rechenleistung. Diese Technologie bildet die Basis für die Entwicklung neuartiger Ansätze zur Lösung klassischer Planungsprobleme des Operations Research (OR): Präskriptive Ansätze integrieren Methoden des ML undDigitalisierung und künstliche Intelligenz führen zu enormen Veränderungen in nahezu allen Bereichen von Wirtschaft und Gesellschaft. Grundlegend für diese Veränderungen ist die Technologie des maschinellen Lernens (ML), ermöglicht durch ein Zusammenspiel großer Datenmengen, geeigneter Algorithmen und ausreichender Rechenleistung. Diese Technologie bildet die Basis für die Entwicklung neuartiger Ansätze zur Lösung klassischer Planungsprobleme des Operations Research (OR): Präskriptive Ansätze integrieren Methoden des ML und Optimierungsverfahren des OR mit dem Ziel, Lösungen für Planungsprobleme direkt aus historischen Observationen von Nachfrage und Features (erklärenden Variablen) abzuleiten. Diese neuartigen Lösungsansätze bieten ein enormes Potential zur Verbesserung von Planungsentscheidungen, wie erste numerische Analysen mit historischen Daten gezeigt haben, und begründen damit ein neues Forschungsfeld innerhalb des OR. In ersten Beiträgen zu diesem neuen Forschungsfeld wurden präskriptive Verfahren für verhältnismäßig einfache Planungsprobleme aus dem Bereich des Lagerbestandsmanagements entwickelt. Häufig weisen Planungsprobleme aber eine deutlich höhere Komplexität auf, und viele dieser komplexen Planungsprobleme gehören zum Bereich der Kapazitätsplanung. Daher ist die Entwicklung präskriptiver Ansätze zur Lösung komplexer Probleme im Kapazitätsmanagement das Ziel dieser Dissertation. In drei inhaltlich abgeschlossenen Teilen werden neuartige präskriptive Ansätze konzipiert und auf realistische Kapazitätsplanungsprobleme angewendet. Im ersten Artikel, „Prescriptive Analytics for Flexible Capacity Management”, werden zwei präskriptive Verfahren entwickelt, und zwar weighted Sample Average Approximation (wSAA) und kernelized Empirical Risk Minimization (kERM), um ein komplexes, zweistufiges stochastisches Kapazitätsplanungsproblem zu lösen: Ein Logistikdienstleister sortiert täglich eintreffende Sendungen auf drei Sortierlinien, für die die wöchentliche Mitarbeiterkapazität geplant werden muss. Dieser Artikel ist der erste Beitrag, in dem ein kERM-Verfahren zur direkten Lösung eines komplexen Planungsproblems mit matrixwertiger Nachfrage und vektorwertiger Entscheidung entwickelt, eine Obergrenze für die erwarteten Kosten für nichtlineare, kernelbasierte Funktionen abgeleitet und die Universal Approximation Property bei Nutzung spezieller Kernelfunktionen gezeigt wird. Die Ergebnisse der numerischen Studie demonstrieren, dass präskriptive Verfahren im Vergleich mit klassischen Lösungsverfahren zu signifikant besseren Entscheidungen führen können und ihre Entscheidungsqualität bei Variation der exogenen Kostenparameter deutlich robuster ist. Im zweiten Artikel, „Prescriptive Analytics for a Multi-Shift Staffing Problem”, werden wSAA und kERM auf ein Planungsproblem der klassischen Warteschlangentheorie angewendet: Ein Dienstleister erhält über den Tag verteilt Aufträge, deren Anzahl und Zeitpunkt des Eintreffens unsicher sind, und muss die Mitarbeiterkapazität für zwei Schichten planen. Dieses Planungsproblem ist komplexer als die bisher mit präskriptiven Ansätzen gelösten Probleme: Auftragseingang und Bearbeitung werden als Wartesystem modelliert und die Nachfrage innerhalb einer Schicht folgt einem nicht stationären Prozess. Diese Komplexität wird mit zwei Näherungsmethoden bewältigt, sodass das Planungsproblem mit wSAA und kERM sowie dem neu entwickelten Optimization-Prediction-Verfahren gelöst werden kann. Die in diesem Artikel entwickelte Methode legt den Grundstein zur Lösung komplexer Warteschlangenmodelle mit präskriptiven Verfahren und schafft damit eine Verbindung zwischen den „Welten“ der Warteschlangentheorie und der präskriptiven Verfahren. Im dritten Artikel, „Explainable Subgradient Tree Boosting for Prescriptive Analytics in Operations Management”, wird ein neues präskriptives Verfahren zur Lösung der Planungsprobleme der ersten beiden Artikel entwickelt, das insbesondere durch die Erklärbarkeit der Entscheidungen attraktiv ist: Subgradient Tree Boosting (STB). Es kombiniert das erfolgreiche Gradient-Boosting-Verfahren aus dem ML mit SAA und verwendet Subgradienten, da die Zielfunktion von OR-Planungsproblemen häufig nicht differenzierbar ist. Die numerische Analyse zeigt, dass STB zu einer vergleichbaren Entscheidungsqualität wie wSAA und kERM führen kann, und dass die Kapazitätsentscheidungen in Beiträge einzelner Features zerlegt und damit erklärt werden können. Das STB-Verfahren ist damit nicht nur aufgrund seiner Entscheidungsqualität attraktiv für Entscheidungsträger, sondern insbesondere auch durch die inhärente Erklärbarkeit. Die in diesen drei Artikeln präsentierten Ergebnisse zeigen, dass die Nutzung präskriptiver Verfahren, wie wSAA, kERM und STB, bei der Lösung komplexer Planungsprobleme zu deutlich besseren Ergebnissen führen kann als der Einsatz klassischer Methoden, die Feature-Daten vernachlässigen oder auf einer parametrischen Verteilungsschätzung basieren.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Pascal Markus Notz
URN:urn:nbn:de:bvb:20-opus-240423
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Wirtschaftswissenschaftliche Fakultät
Faculties:Wirtschaftswissenschaftliche Fakultät / Betriebswirtschaftliches Institut
Referee:Prof. Dr. Richard Pibernik, Prof. Dr. Christoph Flath
Date of final exam:2021/05/31
Language:English
Year of Completion:2021
DOI:https://doi.org/10.25972/OPUS-24042
Dewey Decimal Classification:3 Sozialwissenschaften / 33 Wirtschaft / 338 Produktion
GND Keyword:Maschinelles Lernen; Operations Management; Entscheidungsunterstützung; Kapazitätsplanung
Tag:Entscheidungsunterstützung; Operations Management
Capacity Management; Data-driven Operations Management; Explainability; Machine Learning; Prescriptive Analytics
Release Date:2021/06/30
Licence (German):License LogoCC BY-NC-ND: Creative-Commons-Lizenz: Namensnennung, Nicht kommerziell, Keine Bearbeitungen 4.0 International