The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 10 of 787
Back to Result List

Fractional Insulators and their Parent Hamiltonians

Fraktionale Isolatoren und die zugehörigen Hamiltonoperatoren

Please always quote using this URN: urn:nbn:de:bvb:20-opus-185616
  • In the past few years, two-dimensional quantum liquids with fractional excitations have been a topic of high interest due to their possible application in the emerging field of quantum computation and cryptography. This thesis is devoted to a deeper understanding of known and new fractional quantum Hall states and their stabilization in local models. We pursue two different paths, namely chiral spin liquids and fractionally quantized, topological phases. The chiral spin liquid is one of the few examples of spin liquids with fractionalIn the past few years, two-dimensional quantum liquids with fractional excitations have been a topic of high interest due to their possible application in the emerging field of quantum computation and cryptography. This thesis is devoted to a deeper understanding of known and new fractional quantum Hall states and their stabilization in local models. We pursue two different paths, namely chiral spin liquids and fractionally quantized, topological phases. The chiral spin liquid is one of the few examples of spin liquids with fractional statistics. Despite its numerous promising properties, the microscopic models for this state proposed so far are all based on non-local interactions, making the experimental realization challenging. In the first part of this thesis, we present the first local parent Hamiltonians, for which the Abelian and non-Abelian chiral spin liquids are the exact and, modulo a topological degeneracy, unique ground states. We have developed a systematic approach to find an annihilation operator of the chiral spin liquid and construct from it a many-body interaction which establishes locality. For various system sizes and lattice geometries, we numerically find largely gapped eigenspectra and confirm to an accuracy of machine precision the uniqueness of the chiral spin liquid as ground state of the respective system. Our results provide an exact spin model in which fractional quantization can be studied. Topological insulators are one of the most actively studied topics in current condensed matter physics research. With the discovery of the topological insulator, one question emerged: Is there an interaction-driven set of fractionalized phases with time reversal symmetry? One intuitive approach to the theoretical construction of such a fractional topological insulator is to take the direct product of a fractional quantum Hall state and its time reversal conjugate. However, such states are well studied conceptually and do not lead to new physics, as the idea of taking a state and its mirror image together without any entanglement between the states has been well understood in the context of topological insulators. Therefore, the community has been looking for ways to implement some topological interlocking between different spin species. Yet, for all practical purposes so far, time reversal symmetry has appeared to limit the set of possible fractional states to those with no interlocking between the two spin species. In the second part of this thesis, we propose a new universality class of fractionally quantized, topologically ordered insulators, which we name “fractional insulator”. Inspired by the fractional quantum Hall effect, spin liquids, and fractional Chern insulators, we develop a wave function approach to a new class of topological order in a two-dimensional crystal of spin-orbit coupled electrons. The idea is simply to allow the topological order to violate time reversal symmetry, while all locally observable quantities remain time reversal invariant. We refer to this situation as “topological time reversal symmetry breaking”. Our state is based on the Halperin double layer states and can be viewed as a two-layer system of an ↑-spin and a ↓-spin sphere. The construction starts off with Laughlin states for the ↑-spin and ↓-spin electrons and an interflavor term, which creates correlations between the two layers. With a careful parameter choice, we obtain a state preserving time reversal symmetry locally, and label it the “311-state”. For systems of up to six ↑-spin and six ↓-spin electrons, we manage to construct an approximate parent Hamiltonian with a physically realistic, local interaction.show moreshow less
  • In den letzten Jahren waren zweidimensionale Quantenflu¨ssigkeiten mit fraktionalen Anregungen aufgrund ihrer möglichen Anwendung auf dem aufstrebenden Forschungsgebiet der Quantencomputer und Quantenkryptographie von großem Interesse. Diese Dissertation hat sich zum Ziel gesetzt, einem tieferen Verständnis bekannter und neuer fraktionaler Quanten-Hall-Zust¨ande und ihrer Stabilisierung in lokalen Modellen beizutragen. In diesem Zusammenhang werden zwei Themen betrachtet: Chirale Spinflüssigkeiten und fraktional quantisierte, topologische Phasen.In den letzten Jahren waren zweidimensionale Quantenflu¨ssigkeiten mit fraktionalen Anregungen aufgrund ihrer möglichen Anwendung auf dem aufstrebenden Forschungsgebiet der Quantencomputer und Quantenkryptographie von großem Interesse. Diese Dissertation hat sich zum Ziel gesetzt, einem tieferen Verständnis bekannter und neuer fraktionaler Quanten-Hall-Zust¨ande und ihrer Stabilisierung in lokalen Modellen beizutragen. In diesem Zusammenhang werden zwei Themen betrachtet: Chirale Spinflüssigkeiten und fraktional quantisierte, topologische Phasen. Die chirale Spinflüssigkeit ist eines der wenigen Beispiele fu¨r Spinflu¨ssigkeiten mit fraktionaler Statistik. Trotz ihrer zahlreichen vielversprechenden Eigenschaften beruhen die bisher vorgeschlagenen mikroskopischen Modelle für diesen Zustand alle auf nichtlokalen Wechselwirkungen. Dies erschwert eine experimentelle Realisierung. Im ersten Teil dieser Dissertation stellen wir die ersten Eltern-Hamiltonoperatoren vor, für die die Abelschen und nicht-Abelschen chiralen Spinflüssigkeiten die exakten und, abgesehen von einer topologischen Entartung, einzigen Grundzustände sind. Wir haben eine Methode entwickelt, um ausgehend von einem Vernichtungsoperator für die chirale Spinflüssigkeit eine lokale Mehrkörper-Wechselwirkung zu konstruieren. Numerisch finden wir für verschiedene Systemgrößen und Gittergeometrien Eigenspektren mit großer Anregungslücke und können mit Maschinengenauigkeit die Eindeutigkeit der chiralen Spinflüssigkeit als Grundzustand des jeweiligen Systems bestätigen. Damit liefern unsere Ergebnisse ein exaktes Spinmodell, in dem fraktionale Quantisierung untersucht werden kann. Topologische Isolatoren sind derzeit eines der am häufigsten untersuchten Themen in der Physik der kondensierten Materie. Mit ihrer Entdeckung kam die Frage auf: Gibt es eine verschränkte Gruppe fraktionaler Phasen mit Zeitumkehrsymmetrie? Ein intuitiver Ansatz für die theoretische Konstruktion eines solchen fraktionalen topologischen Isolators besteht darin, das direkte Produkt eines fraktionalen Quanten-HallZustands und seines Zeitumkehrkonjugats zu bilden. Solche Zustände bringen jedoch konzeptionell keinen Mehrwert, da Systeme bestehend aus einem Zustand und seinem Spiegelbild ohne zusätzliche Verschränkung im Kontext der topologischen Isolatoren im Detail erforscht sind. Daher wird aktuell nach Möglichkeiten gesucht, eine topologische Verschränkung zwischen verschiedenen Spinarten umzusetzen. Für alle Anwendungen in der Praxis scheint die Zeitumkehrsymmetrie jedoch die Menge möglicher fraktionaler Zustände auf solche ohne Verschränkung zwischen den beiden Spinspezies zu begrenzen. Im zweiten Teil dieser Dissertation schlagen wir eine neue Universalitätsklasse von fraktional quantisierten, topologisch geordneten Isolatoren vor, die wir “fraktionalen Isolator” nennen. Inspiriert vom fraktionalen Quanten-Hall-Effekt, Spin-Flüssigkeiten und fraktionalen Chern-Isolatoren entwickeln wir eine Wellenfunktion, die eine neue Klasse topologischer Ordnung in einem zweidimensionalen Kristall aus SpinOrbit-gekoppelten Elektronen beschreibt. Unser Ansatz basiert darauf, die topologische Ordnung gegen die Zeitumkehrsymmetrie verstoßen zu lassen, während alle lokal beobachtbaren Größen zeitumkehrinvariant sind. Wir bezeichnen diese Situation als “topologische Zeitumkehrsymmetriebrechung”. Unser Zustand basiert auf den Halperin-Doppelschichtzuständen und kann als ein Zweischichtensystem aus einer ↑-Spinund einer ↓-Spin-Sphäre betrachtet werden. Die Konstruktion beginnt mit zwei Laughlin-Zuständen für die ↑-Spin- und ↓-Spin-Elektronen und einem Wechselwirkungsterm, der eine Verschränkung zwischen den beiden Schichten erzeugt. Wir erhalten einen neuen Zustand, den “311-Zustand”, der lokal zeitumkehrinvariant ist. Für Systeme mit bis zu sechs ↑-Spin- und sechs ↓-Spin-Elektronen finden wir einen approximativen Eltern-Hamiltonoperator mit einer physikalisch realistischen, lokalen Wechselwirkung.show moreshow less

Download full text files

Export metadata

Metadaten
Author: Vera Schnells
URN:urn:nbn:de:bvb:20-opus-185616
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Physik und Astronomie
Faculties:Fakultät für Physik und Astronomie / Institut für Theoretische Physik und Astrophysik
Referee:PD Dr. Martin Greiter, Prof. Dr. Haye Hinrichsen, Prof. Dr. Friedrich Reinert
Date of final exam:2019/07/19
Language:English
Year of Completion:2019
DOI:https://doi.org/10.25972/OPUS-18561
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
GND Keyword:Spinflüssigkeit; Topologischer Isolator
Tag:Chirale Spinflússigkeiten; Fraktionaler Quanten-Hall-Effekt; Quanten-Hall-Effekt; Quanten-Vielteilchensysteme; Topologische Isolatoren
Chiral spin liquids; Fractional quantum Hall effect; Quantum Hall effect; Quantum many-body systems; Topological insulators
PACS-Classification:70.00.00 CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES
Release Date:2019/08/19
Licence (German):License LogoDeutsches Urheberrecht