The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 5 of 271
Back to Result List

Untersuchung von Struktur-Eigenschafts-Beziehungen Kupfer(I)-basierter NIR-Emitter und MRP-Materialien

Investigation of structure-property relationships of copper(I)-based NIR emitters and MRP materials

Please always quote using this URN: urn:nbn:de:bvb:20-opus-187694
  • Im Rahmen dieser Arbeit wurden lumineszente Kupfer(I)-verbindungen untersucht, um durch die Herstellung von Struktur-Eigenschafts-Beziehungen einen Beitrag zur Erforschung niederenergetischer Emitter und mechanoresponsiver Phosphoreszenzmaterialien zu leisten. Darüber hinaus wurden Vorarbeiten zur Ergründung kooperativer Effekte in dinuklearen Kupfer(I)-komplexen durchgeführt. Im Bereich niederenergetischer Emitter wurden tetraedrische Kupferverbindungen mit Chromophorliganden auf Basis des Grundmotivs 2-(Pyridin-2-yl)-imdazol untersucht.Im Rahmen dieser Arbeit wurden lumineszente Kupfer(I)-verbindungen untersucht, um durch die Herstellung von Struktur-Eigenschafts-Beziehungen einen Beitrag zur Erforschung niederenergetischer Emitter und mechanoresponsiver Phosphoreszenzmaterialien zu leisten. Darüber hinaus wurden Vorarbeiten zur Ergründung kooperativer Effekte in dinuklearen Kupfer(I)-komplexen durchgeführt. Im Bereich niederenergetischer Emitter wurden tetraedrische Kupferverbindungen mit Chromophorliganden auf Basis des Grundmotivs 2-(Pyridin-2-yl)-imdazol untersucht. Komplexe mit diesem Liganden emittieren meistens Grün bis Orange, daher wurde ein Stickstoffatom im Rückgrat des Liganden durch Schwefel substituiert, um eine bathochrome Verschiebung zu bewirken. Zur Untersuchung des Einflusses der Donorstärke, Sterik und Komplexgeometrie auf das Emissionsverhalten wurden diverse Phosphane und ein NHC als Donorliganden verwendet. Die Emissionsmaxima der untersuchten Verbindungen liegen erwartungsgemäß im Orangen bis Tiefroten und es konnten für diesen Emissionsbereich gute Quantenausbeuten von bis zu 11 % erreicht werden. Die Anfälligkeit tetraedrischer Kupfer(I)-komplexe für Verzerrungen im angeregten Zustand und die damit einhergehende Erhöhung strahlungsloser Prozesse ließ sich durch den Einsatz sterisch anspruchsvoller Liganden unterdrücken. Um das Potenzial für die Verwendung in optoelektronischen Bauteilen zu ergründen, wurden umfangreiche Stabilitätstests durchgeführt, die die enorme thermische Belastbarkeit im Festkörper sowie langfristige Stabilität in verdünnter Lösung einiger Verbindungen bestätigten. Ferner wurden in Kooperation mit der Gruppe um Prof. Holger Braunschweig photophysikalische Studien an zwei dinuklearen und einem trinuklearen Kupfer(I)-diborinkomplex durchgeführt, die im Rahmen der Promotionen von Dr. Jan Mies und Dr. Theresa Dellermann synthetisiert wurden. Die Verbindungen weisen in Festkörper und Lösung tiefrote Phosphoreszenz auf. Die Effizienz des trinuklearen Komplexes (φ = 0.58 im Festkörper) ist deutlich höher als die der beiden dinuklearen Verbindungen (φ < 0.03). Die Kupfer-Diborin-Bindung besitzt einen signifikanten kovalenten Anteil. Die Übergangsmetallatome haben somit einen starken Einfluss auf die strahlenden Übergänge, was zum Auftreten von Phosphoreszenz führt. Für effiziente Emission ist eine lineare Anordnung zweier Kupferfragmente um das Diborin notwendig, was im Fall des trinuklearen Komplexes stets gewährleistet ist, für die dinuklearen Komplexe jedoch nur in Lösung zu beobachten ist. Durch die Studien wurde einerseits das komplexe Emissionsverhalten dieser Komplexe aufgeklärt und andererseits die Relevanz dieser neuen Verbindungsklasse für niederenergetische Emittermaterialien gezeigt. Zusätzlich wurden Vorarbeiten zur Untersuchung kooperativer Effekte in dinuklearen Kupfer(I)-verbindungen unter Ausschluss schwer zu erhaltender cuprophiler Wechselwirkungen durchgeführt. Es sollten mono- und dinukleare Kupfer(I)-komplexe mit Bisbenzimidazol und Benzimidazolpyrimidin als verbrückenden Chromophorliganden synthetisiert und photophysikalisch untersucht werden, um eine eventuelle Erhöhung der Effizienz der dinuklearen Komplexe gegenüber ihren mononuklearen Analoga zu quantifizieren. Im Rahmen dieser Arbeit gelang es, einen zuverlässigen Syntheseweg für die im Rückgrat alkylierten verbrückenden Liganden zu etablieren. Ferner wurden erste Versuche zur Herstellung kationischer und neutraler mononuklearer Komplexe durchgeführt. Außerdem wurde die mechanochrome Lumineszenz eines aus Vorarbeiten bekannten dinuklearen Kupferkomplexes untersucht und Struktur-Eigenschafts-Beziehungen hergestellt. Hierzu wurden Komplexsalze mit den Anionen PF6- und BF4- hergestellt und mittels zahlreicher Spektroskopiemethoden analysiert, um umfangreiche Informationen zu den Eigenschaften im Grund- und angeregten Zustand zu sammeln. Durch Schwingungsspektroskopie wurde nachgewiesen, dass die Phasenänderung zu keiner veränderten Konstitution der Verbindung im Grundzustand führt. Durch 1H-19F-HOESY- sowie 19F-Festkörper-NMR-Experimente wurde festgestellt, dass sowohl in Lösung wie auch im Festkörper Kation und Anion gepaart vorliegen und miteinander wechselwirken. Da die BF4- und PF6-Komplexe in Lösung ein sehr ähnliches Emissionsverhalten zum amorphen Feststoff aufweisen, wurde davon ausgegangen, dass die für die Emission verantwortlichen Strukturen in beiden Medien vergleichbar sind. Zusätzlich gelang es, mittels ESR-Spektroskopie nachzuweisen, dass im Grundzustand keine ausreichende Annäherung der beiden Kupferatome stattfindet, um dipolare Wechselwirkungen zu erzeugen. Mithilfe quantenchemischer Rechnungen wurde die mechanochrome Lumineszenz nicht auf das Auftreten von Cuprophilie zurückgeführt, sondern auf die Ausbildung einer Cu-F-Bindung im angeregten Zustand, was ein völlig neuer Mechanismus für mechanochrome Lumineszenz bei Kupfer(I)-komplexen ist. In weiterführenden photophysikalischen Studien wurde zudem gezeigt, dass die Emission auch Empfindlichkeit gegenüber Temperatur sowie Lösungsmitteldämpfen aufweist und es sich somit um eine multiresponsive Verbindungsklasse handelt.show moreshow less
  • In the context of this work, luminescent copper(I) compounds were investigated in order to contribute to the investigation of low-energy emitters and mechanoresponsive phosphorescence materials by establishing structure-property relationships. In addition, preparatory work was carried out to investigate cooperative effects in dinuclear copper(I) complexes. In the field of low-energy emitters, tetrahedral copper compounds with chromophore ligands based on the basic motif 2-(pyridin-2-yl)-imdazole were investigated. Complexes with this ligandIn the context of this work, luminescent copper(I) compounds were investigated in order to contribute to the investigation of low-energy emitters and mechanoresponsive phosphorescence materials by establishing structure-property relationships. In addition, preparatory work was carried out to investigate cooperative effects in dinuclear copper(I) complexes. In the field of low-energy emitters, tetrahedral copper compounds with chromophore ligands based on the basic motif 2-(pyridin-2-yl)-imdazole were investigated. Complexes with this ligand mostly emit green to orange, therefore a nitrogen atom in the backbone of the ligand was substituted by sulfur to cause a bathochromic shift. To investigate the influence of donor strength, sterics and complex geometry on emission behavior, various phosphanes and an NHC were used as donor ligands. As expected, the emission maxima of the investigated compounds lie in the orange to deep red range and good quantum yields for this emission range of up to 11 % could be achieved. The susceptibility of tetrahedral copper(I) complexes to distortions in the excited state and the associated increase in radiationless processes could be suppressed by the use of sterically demanding ligands. In order to determine the potential for use in optoelectronic devices, extensive stability tests were carried out which confirmed the enormous thermal stability in the solid state as well as long-term stability in diluted solution of some compounds. Furthermore, in cooperation with the group around Prof. Holger Braunschweig, photophysical studies on one trinuclear and two dinuclear copper(I) diboryne complexes were carried out, which were synthesized in the context of the doctorates of Dr. Jan Mies and Dr. Theresa Dellermann. The compounds show deep red phosphorescence in solid and solution. The efficiency of the trinuclear complex (φ = 0.58 in solid state) is significantly higher than that of the two dinuclear compounds (φ < 0.03). The copper diboryne bond has a significant covalent portion. The transition metal atoms thus have a strong influence on the radiative transitions, which leads to the occurrence of phosphorescence. For efficient emission, a linear arrangement of two copper fragments around the diboryne is necessary, which is always guaranteed in the case of the trinuclear complex, but can only be observed in solution for the dinuclear complexes. On the one hand, the complex emission behavior of these complexes was clarified by the studies and, on the other hand, the relevance of this new compound class for low-energy emitter materials was demonstrated. In addition, preparatory work was carried out to investigate cooperative effects in dinuclear copper(I) compounds, excluding cuprophilic interactions that are difficult to obtain. Mono- and dinuclear copper(I) complexes with bisbenzimidazole and benzimidazolpyrimidine as bridging chromophore ligands should be synthesized and photophysically investigated in order to quantify a possible increase in the efficiency of the dinuclear complexes compared to their mononuclear analogues. In the course of this work, it was possible to establish a reliable synthetic pathway for the alkylated bridging ligands. In addition, first experiments for the syntheses of cationic and neutral mononuclear complexes were carried out. In addition, the mechanochromic luminescence of a dinuclear copper complex known from preliminary work was investigated and structure-property relationships were established. Complex salts with the anions PF6- and BF4- were prepared and analyzed by means of numerous spectroscopic methods in order to collect comprehensive information on the properties in the ground and excited state. By vibrational spectroscopy it was proven that the phase change does not lead to a changed constitution of the compound in the ground state. Through 1H-19F-HOESY and 19F solid state NMR experiments, it was determined that cation and anion are paired and interact both in solution and in the solid state. Since the BF4 and PF6 complexes in solution exhibit very similar emission behavior to the amorphous solid, it was assumed that the structures responsible for the emission are comparable in both media. In addition, ESR spectroscopy was used to prove that in the ground state, the two copper atoms do not approach each other sufficiently to produce dipolar interactions. Using quantum chemical calculations, mechanochromic luminescence was not attributed to the occurrence of cuprophilicity, but to the formation of a Cu-F bond in the excited state, which is a completely new mechanism for mechanochromic luminescence in copper(I) complexes. Further photophysical studies have shown that the emission is also sensitive to temperature and solvent vapors, making it a multi-responsive compound class.show moreshow less

Download full text files

Export metadata

Metadaten
Author: Benjamin HuppORCiD
URN:urn:nbn:de:bvb:20-opus-187694
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Chemie und Pharmazie
Faculties:Fakultät für Chemie und Pharmazie / Institut für Anorganische Chemie
Referee:Prof. Dr. Andreas SteffenORCiD, Prof. Dr. Maik FinzeORCiD
Date of final exam:2019/08/14
Language:German
Year of Completion:2020
DOI:https://doi.org/10.25972/OPUS-18769
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 546 Anorganische Chemie
GND Keyword:Kupferkomplexe; Funktionswerkstoff; Phosphoreszenz
Tag:Funktionsmaterialien; Mechanoresponsive Phosphoreszenz; Nahinfrarot-Emitter; Photophysik
Release Date:2020/07/08
Licence (German):License LogoDeutsches Urheberrecht