The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 4 of 10
Back to Result List

Characterization of novel rhodopsins with light-regulated cGMP production or cGMP degradation

Charakterisierung neuartiger Rhodopsine mit Licht-regulierter cGMP-Produktion oder cGMP-Degradation

Please always quote using this URN: urn:nbn:de:bvb:20-opus-168143
  • Photoreceptors are widely occurring in almost all kingdoms of life. They mediate the first step in sensing electromagnetic radiation of different wavelength. Absorption spectra are found within the strongest radiation from the sun and absorption usually triggers downstream signaling pathways. Until now, mainly 6 classes of representative photoreceptors are known: five water-soluble proteins, of these three classes of blue light-sensitive proteins including LOV (light-oxygen-voltage), BLUF (blue-light using FAD), and cryptochrome modules withPhotoreceptors are widely occurring in almost all kingdoms of life. They mediate the first step in sensing electromagnetic radiation of different wavelength. Absorption spectra are found within the strongest radiation from the sun and absorption usually triggers downstream signaling pathways. Until now, mainly 6 classes of representative photoreceptors are known: five water-soluble proteins, of these three classes of blue light-sensitive proteins including LOV (light-oxygen-voltage), BLUF (blue-light using FAD), and cryptochrome modules with flavin (vitamin B-related) nucleotides as chromophore; while two classes of yellow and red light-sensitive proteins consist of xanthopsin and phytochrome, respectively. Lastly, as uniquely integral membrane proteins, the class of rhodopsins can usually sense over a wide absorption spectrum, ranging from ultra-violet to green and even red light. Rhodopsins can be further divided into two types, i.e., microbial (type I) and animal (type II) rhodopsins. Rhodopsins consist of the protein opsin and the covalently bound chromophore retinal (vitamin A aldehyde). In this thesis, I focus on identification and characterization of novel type I opsins with guanylyl cyclase activity from green algae and a phosphodiesterase opsin from the protist Salpingoeca rosetta. Until 2014, all known type I and II rhodopsins showed a typical structure with seven transmembrane helices (7TM), an extracellular N-terminus and a cytosolic C-terminus. The proven function of the experimentally characterized type I rhodopsins was membrane transport of ions or the coupling to a transducer which enables phototaxis via a signaling chain. A completely new class of type I rhodopsins with enzymatic activity was identified in 2014. A light-activated guanylyl cyclase opsin was discovered in the fungus Blastocladiella emersonii which was named Cyclop (Cyclase opsin) by Gao et al. (2015), after heterologous expression and rigorous in-vitro characterization. BeCyclop is the first opsin for which an 8 transmembrane helices (8TM) structure was demonstrated by Gao et al. (2015). Earlier (2004), a novel class of enzymatic rhodopsins was predicted to exist in C. reinhardtii by expressed sequence tag (EST) and genome data, however, no functional data were provided up to now. The hypothetical rhodopsin included an N-terminal opsin domain, a fused two-component system with histidinekinase and response regulator domain, and a C-terminal guanylyl cyclase (GC) domain. This suggested that there could be a biochemical signaling cascade, integrating light-induction and ATP-dependent phosphate transfer, and as output the light-sensitive cGMP production. One of my projects focused on characterizing two such opsins from the green algae Chlamydomonas reinhardtii and Volvox carteri which we then named 2c-Cyclop (two-component Cyclase opsin), Cr2c-Cyclop and Vc2c-Cyclop, respectively. My results show that both 2c-Cyclops are light-inhibited GCs. Interestingly, Cr2c-Cyclop and Vc2c-Cyclop are very sensitive to light and ATP-dependent, whereby the action spectra of Cr2c-Cyclop and Vc2c-Cyclop peak at ~540 nm and ~560 nm, respectively. More importantly, guanylyl cyclase activity is dependent on continuous phosphate transfer between histidine kinase and response regulator. However, green light can dramatically block phosphoryl group transfer and inhibit cyclase activity. Accordingly, mutation of the retinal-binding lysine in the opsin domain resulted in GC activity and lacking light-inhibition. A novel rhodopsin phosphodiesterase from the protist Salpingoeca rosetta (SrRhoPDE) was discovered in 2017. However, the previous two studies of 2017 claimed a very weak or absent light-regulation. Here I give strong evidence for light-regulation by studying the activity of SrRhoPDE, expressed in Xenopus laevis oocytes, in-vitro at different cGMP concentrations. Surprisingly, hydrolysis of cGMP shows a ~100-fold higher turnover than that of cAMP. Light can enhance substrate affinity by decreasing the Km value for cGMP from 80 μM to 13 μM, but increases the maximum turnover only by ~30%. In addition, two key single mutants, SrRhoPDE K296A or K296M, can abolish the light-activation effect by interrupting a covalent bond of Schiff base type to the chromophore retinal. I also demonstrate that SrRhoPDE shows cytosolic N- and C- termini, most likely via an 8-TM structure. In the future, SrRhoPDE can be a potentially useful optogenetic tool for light-regulation of cGMP concentration, possibly after further improvements by genetic engineering.show moreshow less
  • Photorezeptoren sind in fast allen Lebewesen vorzufinden. Sie vermitteln den ersten Schritt bei der Detektion von elektromagnetischer Strahlung unterschiedlicher Wellenlänge. Ihre Absorptionsspektren finden sich innerhalb des Bereichs der stärksten Sonnenstrahlung (UV bis nahes IR) und die Absorption löst normalerweise nachgelagerte Signalwege aus. Bis jetzt sind hauptsächlich 6 Klassen von Photorezeptoren bekannt: als wasserlösliche Proteine zunächst drei Klassen von Blaulicht-empfindlichen Modulen, die LOV-Domäne (Light/Oxygen/Voltage), diePhotorezeptoren sind in fast allen Lebewesen vorzufinden. Sie vermitteln den ersten Schritt bei der Detektion von elektromagnetischer Strahlung unterschiedlicher Wellenlänge. Ihre Absorptionsspektren finden sich innerhalb des Bereichs der stärksten Sonnenstrahlung (UV bis nahes IR) und die Absorption löst normalerweise nachgelagerte Signalwege aus. Bis jetzt sind hauptsächlich 6 Klassen von Photorezeptoren bekannt: als wasserlösliche Proteine zunächst drei Klassen von Blaulicht-empfindlichen Modulen, die LOV-Domäne (Light/Oxygen/Voltage), die BLUF-Domäne (Blue Light sensing, Using FAD) und Cryptochrom mit Flavinen (Vitamin B-Komplex) als Chromophor, sowie Xanthopsine, die hauptsächlich für gelbes Licht und Phytochrome, die für Rotlicht empfindlich sind. Als integrale Membranproteine kann die Klasse der Rhodopsine jedoch ein breiteres Absorptionsspektrum aufweisen, je nach Rhodopsin empfindlich für UV/blaues, grünes oder sogar rotes Licht. Rhodopsine bestehen aus dem Protein Opsin und dem kovalent gebundenen Chromophor Retinal (Vitamin A-Aldehyd). Sie können weiter in zwei Typen unterteilt werden, mikrobielle (Typ I) und tierische (Typ II) Rhodopsine. In dieser Dissertation konzentriere ich mich auf die Identifizierung und Charakterisierung von neuen Typ I Opsinen mit Guanylylcyclase-Aktivität aus Grünalgen und einem Phosphodiesterase-Opsin aus dem Protisten Salpingoeca rosetta. Bis 2014 wiesen alle bekannten Rhodopsine eine typische Struktur mit sieben Transmembranhelices (7TM), einem extrazellulären N-Terminus und einem zytosolischen C- Terminus auf. Die nachgewiesene Funktion der experimentell charakterisierten Rhodopsine vom Typ I ist der Membrantransport von Ionen oder die Kopplung an einen Transducer, der die Phototaxis über eine Signalkette ermöglicht. Eine völlig neue Klasse von Typ-I Rhodopsinen mit enzymatischer Aktivität wurde 2014 gefunden. Ein lichtaktiviertes Guanylyl-Cyclase- Opsin wurde im Pilz Blastocladiella emersonii (Be) entdeckt, das von Gao et al. (2015) nach heterologer Expression und gründlicher in-vitro-Charakterisierung Cyclop (Cyclase opsin) genannt wurde. BeCyclop ist das erste Opsin, für das eine Struktur mit 8 Transmembranhelices (8TM) demonstriert wurde (Gao et al., 2015). Bereits früher (2004) wurde durch expressed sequence tag (EST) und Genom-Daten vorhergesagt, dass eine neue Klasse von enzymatischen Rhodopsinen in Chlamydomonas reinhardtii existiert, jedoch gelang bisher keine funktionelle Expression. Eines dieser hypothetischen Rhodopsine umfasste eine N-terminale Opsin- Domäne, ein fusioniertes Zweikomponentensystem mit Histidinkinase- und Regulator-Domäne und eine C-terminale Guanylylcyclase (GC). Dies legte nahe, dass das Protein eine biochemische Signalkaskade inkorporieren könnte, die Licht-Absorption und ATP-abhängigen Phosphattransfer integriert und eine lichtempfindliche cGMP-Produktion bewirkt. Eines meiner Projekte konzentrierte sich auf die Charakterisierung von zwei solchen Opsinen aus den Grünalgen C. reinhardtii und Volvox carteri, die wir nun 2c-Cyclop (Zweikomponenten-Cyclase-Opsin), d.h. Cr2c-Cyclop und Vc2c-Cyclop, nennen. Meine Ergebnisse zeigen, dass beide 2c-Cyclops durch Licht gehemmte GCs sind. Interessanterweise sind Cr2c-Cyclop und Vc2c-Cyclop sehr empfindlich gegenüber Licht und die cGMP- Produktion ist ATP-abhängig, wobei die Wirkungsspektren von Cr2c-Cyclop und Vc2c-Cyclop bei ~540 nm bzw. ~560 nm ihren Höhepunkt erreichen. Ich konnte zeigen, dass die Guanylyl- Cyclase-Aktivität von einem kontinuierlichen Phosphat-Transfer zwischen Histidinkinase und Response-Regulator abhängt. Grünes Licht kann jedoch den Phosphoryl-Gruppen-Transfer dramatisch blockieren und die Cyclase-Aktivität inhibieren. Dementsprechend führte die Mutation des Retinal-bindenden Lysins in der Opsindomäne zu einer cGMP Produktion ohne jegliche Lichtinhibierung. Eine neuartige Rhodopsin-Phosphodiesterase aus dem Protisten Salpingoeca rosetta (SrRhoPDE) wurde im Jahr 2017 entdeckt. Die vorangegangenen zwei Studien von 2017 zeigten jedoch eine sehr schwache oder fehlende Lichtregulation der PDE-Aktivität. Hier konnte ich eine starke Lichtregulation beweisen, indem ich die Aktivität von SrRhoPDE, exprimiert in Xenopus laevis Oozyten, in-vitro bei verschiedenen cGMP-Konzentrationen untersuchte. Überraschenderweise zeigt die Hydrolyse von cGMP einen etwa 100-fach höheren Umsatz als der von cAMP. Licht kann die Substrataffinität durch Verringern des Km-Werts für cGMP von 80 µM auf 13 µM erhöhen, erhöht jedoch den maximalen Umsatz nur um ~30%. Darüber hinaus können zwei Einzelmutanten, SrRhoPDE K296A oder K296M, den Lichtaktivierungseffekt aufheben, indem sie eine kovalente Bindung vom Schiff-Base-Typ an das Chromophor Retinal unterbrechen. Ich zeige auch, dass SrRhoPDE zytosolische N- und C-Termini aufweist, höchstwahrscheinlich über eine 8-TM-Struktur. In Zukunft könnte SrRhoPDE ein potentiell nützliches optogenetisches Werkzeug für die Lichtregulation der cGMP-Konzentration sein, möglicherweise nach weiteren Verbesserungen durch Gentechnik.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Yuehui Tian
URN:urn:nbn:de:bvb:20-opus-168143
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Graduate Schools
Faculties:Graduate Schools / Graduate School of Life Sciences
Fakultät für Biologie / Julius-von-Sachs-Institut für Biowissenschaften
Referee:Prof. Dr. Georg Nagel
Date of final exam:2018/09/10
Language:English
Year of Completion:2019
DOI:https://doi.org/10.25972/OPUS-16814
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 58 Pflanzen (Botanik) / 580 Pflanzen (Botanik)
Tag:Photoreceptor; Rhodopsin
guanylyl cyclase (GC); two-component
Release Date:2019/09/10
Licence (German):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung 4.0 International