The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 7 of 10
Back to Result List

Mapping and monitoring small-scale mining activities in Ghana using Sentinel-1 time series (2015−2019)

Please always quote using this URN: urn:nbn:de:bvb:20-opus-203204
  • Illegal small-scale mining (galamsey) in South-Western Ghana has grown tremendously in the last decade and caused significant environmental degradation. Excessive cloud cover in the area has limited the use of optical remote sensing data to map and monitor the extent of these activities. This study investigated the use of annual time-series Sentinel-1 data to map and monitor illegal mining activities along major rivers in South-Western Ghana between 2015 and 2019. A change detection approach, based on three time-series features — minimum, mean,Illegal small-scale mining (galamsey) in South-Western Ghana has grown tremendously in the last decade and caused significant environmental degradation. Excessive cloud cover in the area has limited the use of optical remote sensing data to map and monitor the extent of these activities. This study investigated the use of annual time-series Sentinel-1 data to map and monitor illegal mining activities along major rivers in South-Western Ghana between 2015 and 2019. A change detection approach, based on three time-series features — minimum, mean, maximum — was used to compute a backscatter threshold value suitable to identify/detect mining-induced land cover changes in the study area. Compared to the mean and maximum, the minimum time-series feature (in both VH and VV polarization) was found to be more sensitive to changes in backscattering within the period of investigation. Our approach permitted the detection of new illegal mining areas on an annual basis. A backscatter threshold value of +1.65 dB was found suitable for detecting illegal mining activities in the study area. Application of this threshold revealed illegal mining area extents of 102 km\(^2\), 60 km\(^2\) and 33 km\(^2\) for periods 2015/2016–2016/2017, 2016/2017–2017/2018 and 2017/2018–2018/2019, respectively. The observed decreasing trend in new illegal mining areas suggests that efforts at stopping illegal mining yielded positive results in the period investigated. Despite the advantages of Synthetic Aperture Radar data in monitoring phenomena in cloud-prone areas, our analysis revealed that about 25% of the Sentinel-1 data, mostly acquired in March and October (beginning and end of rainy season respectively), were unusable due to atmospheric effects from high intensity rainfall events. Further investigation in other geographies and climatic regions is needed to ascertain the susceptibility of Sentinel-1 data to atmospheric conditions.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Gerald Forkuor, Tobias Ullmann, Mario Griesbeck
URN:urn:nbn:de:bvb:20-opus-203204
Document Type:Journal article
Faculties:Philosophische Fakultät (Histor., philolog., Kultur- und geograph. Wissensch.) / Institut für Geographie und Geologie
Language:English
Parent Title (English):Remote Sensing
ISSN:2072-4292
Year of Completion:2020
Volume:12
Issue:6
Article Number:911
Source:Remote Sensing (2020) 12:6, 911. https://doi.org/10.3390/rs12060911
DOI:https://doi.org/10.3390/rs12060911
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 52 Astronomie / 526 Mathematische Geografie
5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Tag:Ghana; Sentine-1; galamsey; image artifacts; mining; time-series features
Release Date:2022/05/19
Date of first Publication:2020/03/12
Licence (German):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung 4.0 International