Ultraschnelle zeitaufgelöste Absorptionsspektroskopie im weichen Röntgenbereich

Ultrafast timeresolved absorptionspectroscopy in soft X-ray regime

Please always quote using this URN: urn:nbn:de:bvb:20-opus-16417
  • Bis in die 50er Jahren wurden ausschließliche Röntgenröhren in der Röntgenspektroskopie benutzt. (Parratt, 1938). In den 50er Jahren wurden die ersten Synchrotrons gebaut und für die Spektroskopie im Röntgenbereich angewendet. (Blocker et al., 1950). Die auch noch heute verwendeten Techniken wurden zum ersten Mal 1948 (Elder et al. 1948) in der Literatur beschrieben. Doch es dauerte Jahrzehnte, bis mit den neu zur Verfügung stehenden Synchrotrons die statische Röngendiffraktometrie zur röntgenspektroskopischen Strukturaufklärung routinemäßigBis in die 50er Jahren wurden ausschließliche Röntgenröhren in der Röntgenspektroskopie benutzt. (Parratt, 1938). In den 50er Jahren wurden die ersten Synchrotrons gebaut und für die Spektroskopie im Röntgenbereich angewendet. (Blocker et al., 1950). Die auch noch heute verwendeten Techniken wurden zum ersten Mal 1948 (Elder et al. 1948) in der Literatur beschrieben. Doch es dauerte Jahrzehnte, bis mit den neu zur Verfügung stehenden Synchrotrons die statische Röngendiffraktometrie zur röntgenspektroskopischen Strukturaufklärung routinemäßig benutzt werden konnte. Diese Entwicklungen werden bis heute fortgeführt und ebneten den Weg für viele Anwendungen. Während dieser Zeit ist auch ein anderer Wissenschaftszweig entstanden, die Lasertechnik. Diese ist seit dieser Zeit auch enorm gewachsen, und jetzt fordert sie auch die Synchrotrons bei der zeitaufgelösten Röntgenspektroskopie heraus. Die Laserstrahlung war am Anfang kontinuierlich. Erst durch die späteren Entwicklungen konnte ein gepulster Betrieb realisiert werden. Mit der Zeit wurden die Laserpulse immer kürzer und die Pulsenergie ist immer mehr gewachsen. Die kurze Pulsdauer der Laser wird in so genannten Pump-Probe Messungen verwendet: damit können schnelle Änderungen, die von einem Pumppuls ausgelöst werden mit einem Probepuls verfolgt werden. Die Auflösung der Messung ist durch die Pulsdauer gegeben. Die Pulsdauer wurde in den letzten Jahrzehnten vom Nanosekunden- bis in den Femtosekundenbereich reduziert. Hier ergibt sich aber nicht etwa eine technologische Grenze sondern eine fundamentale. Die zurzeit kürzesten Laserpulse haben eine Dauer von einigen wenigen Femtosekunden und sind damit schon sehr nahe der Periodendauer einer optischen Schwingung, die ebenfalls 1 bis 2fs beträgt. Allerdings zeigt sich auch, dass mit den zur Verfügung stehenden Laserpulsen die Zeitauflösung ausreicht um fast alle Vorgängen zu beobachten. Nur ist die Interpretation manchmal sehr schwierig, wenn es gilt das gemessene Signal einer atomaren Bewegung zuzuordnen. Abhilfe schafft hier die Verwendung von Röntgenstrahlung, die hervorragend geeignet ist Strukturinformation direkt zu erhalten. Wenn die Strahlung gepulst ist kann damit auch die Dynamik der Struktur erfasst werden. Ein Erfolg versprechender Ansatz zur Erzeugung von Röntgenpulsen mit einer Dauer von einigen Femtosekunden ist die Konversion von ultrakurzen Laserpulsen in den Röntgenbereich. Heute dazu erfolgreich demonstrierte Techniken sind die Laser-Plasmaquellen oder die hoher Harmonische Erzeugung (HHG). Die Plasmaquellen erzeugen im keV Energiebereich Röntgenphotonen – aber nur mit einer Pulsdauer von einigen 100fs. HHG ist hingegen eine interessante Alternative, die Pulse mit einer Dauer im Attosekundenbereich erzeugen kann. Allerdings war der Spektralbereich bis vor kurzem auf einige 100eV beschränkt. Eine Ausweitung des Spektrums von HHG Strahlung in den keV Bereich macht die Quelle aber erst wirklich einsetzbar für Messungen an technisch und wissenschaftlich interessanten Systemen. Im Energiebereich des Wasserfensters (ca 300 bis 600eV) können biologische Prozesse mit einer Zeitauflösung im ps-fs Bereich verfolgt werden. Im höheren Energiebereich von ca. 700eV kann man die magnetischen Eigenschaften von Selten-Erdmetallen beobachten. Diese Arbeit ist der Entwicklung einer laserbasierten HH-Quelle und deren Anwendung in der zeitaufgelösten Spektroskopie gewidmet. Es sollte herausgefunden werden, welche Anforderungen werden an das Lasersystem in Bezug auf Pulsparameter gestellt, um damit Spektroskopie in einem Bereich bis zu 1keV zu machen. Auch sollte geklärt werden, welche spektroskopischen Methoden sind möglich und wo liegen ihre Grenzen. In dieser Arbeit wurde sehr viel Neuland betreten, sowohl auf dem Gebiet der Lasertechnik als auch auf der Entwicklung der HH Quelle. Darüber hinaus ist diese Arbeit die erste Arbeit die sich mit Anwendung von HH-Strahlung für zeitaufgelöste Röntgenabsorptionsspektroskopie befasst. Das zweite Kapitel befasst sich mit den Grundlagen der Röntgenspektroskopie. Bei der Wechselwirkung von Röntgenstrahlung mit Materie wird die elektronische Struktur, die Elektronenverteilungen der Atome oder Moleküle verändert: Man kann die Elektronen in das Valenzband oder in das Kontinuum anregen. Die in das Kontinuum anregten Elektronen können gleichzeitig mit den Nachbaratomen wechselwirken, und von diesen rückstreuen. Diese Wechselwirkung wird durch elektronische Struktur, die elektronische Verteilung der Atome und Moleküle beeinflusst. Diese Vorgänge verändern die Röntgenabsorption des Materials. Durch die Messung der Veränderung der Röntgenabsorption kann man auf die atomare Struktur, die atomare Abstände folgern. Diese Messungen wurden bisher mit Synchrotronstrahlung durchgeführt, deren Pulsdauer bisher nicht kürzer als einige ps war, und damit nicht den schnellsten Änderungen folgen konnte. Ein Lasersystem mit höherer Energie und kürzerer Pulsdauern ist der Schlüssel zu hochzeitaufgelösten Experimenten. Die Entwicklung eines solchen Lasersystems ist im dritten Kapitel beschrieben. Erster Teil des Kapitels erklärt die Probleme, die durch den Verstärkungsprozess auftreten. Die spektrale Einengung und der Energieverlust sind immer die am schwierigsten zu lösenden Probleme in einem Verstärkersystem. Wegen der nötigen zeitliche Pulsdehnung und der folgenden Pulskompression erleidet der Puls einen Energieverlust. Die nichtlinearen Effekte verursachen spektrale Einengung im Verstärkerkristall. Um diese Nachteile zu vermeiden dienen die unterschiedlichen Techniken, wie die Verwendung einer gasgefüllten Hohlfaser zur nichtlinearen spektralen Verbreiterung und unterschiedlicher Pulsformungstechniken (akustooptische Modulator, LCD,…). Der verbleibende Teil des Kapitels stellt diese Methoden, ihre Vorteilen und Nachteile dar. Abschließend sind die Erfolge bei der Entwicklung des Lasersystems vorgestellt: Nach allen Optimierungen wurden Pulse mit einer Energie von 3mJ und einer Dauer von 12fs realisiert. Die erste Verwendung des neuen Systems war die Erzeugung hoher Harmonischer mit konventioneller Technik. Diese Technik basiert auf einem Aufbau mit einem Gastarget in das die Laserpulse fokussiert werden. Das vierte Kapitel beschreibt die Theorie und Schwierigkeiten des Erzeugungsprozesses durch die Erklärung der grundlegenden mikroskopischen (Erzeugung) und die makroskopischen Effekte (Ausbreitungseffekte) im Gastarget. Das Problem der niederen Konversionseffizienz im hochenergetischen Bereich kann gelöst werden, wenn die neu entwickelte Technik, die als nichtadiabatische Phasenanpassung schon in der Literatur existiert hat, angewendet wird. Sie beruht auf einer starken Fokussierung von extrem kurzen Pulsen und ermöglicht Erzeugung von Röntgenphotonen mit Energien bis zu 3,5keV. Mit diesen schönen Erfolgen wurden die ersten statischen spektroskopischen Experimente durchgeführt. Die aufgenommenen Spektren zeigen schöne Absorptionskanten bei Titan, Kupfer, und Neon, Platin. Die Auswertungen dieser Spektren zeigen, dass es genügend Photonen bis 1keV gibt und ermöglichen so die Anwendung der so genannten EXAFS Technik. Im fünften Kapitel werden die gemessene Röntgenspektren und die mit der EXAFS Methode ermittelten atomaren Abständen von Silizium, Titan und Kupfer, dargestellt. Dieses Kapitel beschreibt ferner unsere ersten erfolgreichen Experimenten zur zeitaufgelöste Röntgenabsorptionsspektroskopie in der Nähe der Silizium L-Kante bei 100eV. Die Zeitauflösung, die mit Hilfe der Pump-Probe Technik erzielt werden konnte war besser als 20fs. Die Messungen wurden in einem weiten Energie – und Zeitbereichen durchgeführt: im Bereich von 0-100ps und 0-1ps, sowie von ca. 70eV bis 500eV. Die bestimmten Zeitkonstanten, stimmen mit in der Literatur angegebenen Werten für die unterschiedlichen Relaxationsprozessen sehr gut überein.show moreshow less
  • Until the 50s years, the X-ray tubes were used in the X-ray spectroscopy. The first synchrotrons appeared in the 50s years and it took several tens years, when they were applied for the static X-ray diffractrometry and the X-ray structure analysis became routine technique. These techniques are under development up to now for the broadened application areas. During this time, a new area of the physics appeared as e.g. the laser technique. They developed and bloomed meantime and now they challenge the synchrotrons to make more effort in the X-rayUntil the 50s years, the X-ray tubes were used in the X-ray spectroscopy. The first synchrotrons appeared in the 50s years and it took several tens years, when they were applied for the static X-ray diffractrometry and the X-ray structure analysis became routine technique. These techniques are under development up to now for the broadened application areas. During this time, a new area of the physics appeared as e.g. the laser technique. They developed and bloomed meantime and now they challenge the synchrotrons to make more effort in the X-ray spectroscopy. The laser light was continuum at first, but later the pulse operation spread and the aim become to reach possible shortest pulse. The pulse mode makes possible to use the pump-probe technique. The probe pulse sans and tests the effect of the first-coming pump pulse. The resolution of the measurement is defined by the pulse duration of the pulses. This tented from the nanosecond to the femtosecond timescale. Now the metrology works close to the duration of one optical period. In this area, the scientist is not only by the technological rather by a fundamental border. By the application of the commercial pump-probe technique one can gather dynamic information usually in the IR wavelength scale. Near to the atomic scale, one can observe the structure of the material – and by the application of the X-ray pulses is possible to examine the processes, their development and evolutions deeply in the material, close to the atomic and molecular structure. The available X-ray techniques deliver X-ray pulses: the plasma sources can produce keV pulses in the few hundred fs regime. The slicing technique compressed the pulse duration of the synchrotrons down to few hundred fs also. The High Harmonic Generation (HHG) is the only existing technique for single attosecond pulse generation in the 100 eV regime. The development of the HHG forward to the keV energy opens the way for fast spectroscopic measurements in the water-window with fs pulses. The biology waits for a long time for direct observation of the fast organic processes in the fs regime. The 700 eV reaches the limit of the magnetic earth-metal spectroscopy. This work is devoted to the development and application of a laser based HH Source. The exact parameterisation and optimisation of the laser system is inevitable for the keV spectroscopy. It is clarified, which methods are acceptable and which works at their edges. This work describes the development of a laser system, which - application as an X-ray source - reached and overstepped the keV regime. This is the first work, which is devoted to the application of the HH radiation for time resolved absorption spectroscopy. The second chapter describes the bases of the X-ray spectroscopy. The interaction of the X-ray and material changes the electronic structure, the electron distribution of the atoms or molecules: the electrons can be excited from the valence band into the conduction band. The electrons, which are excited in the continuum, can interact with the neighbour atoms, from when they can backscatter. This interaction is affected by the electronic structure and the electronic distribution of the atom and molecules. The processes change the X-ray absorption of the materials. Through the measurements of these modifications can conclude to the atomic structure and atomic distances. Up top now were made these measurements with synchrotron radiation, which pulse duration was not shorter as ps. Therefore they could not observe the faster modifications. These experiments demand a laser system with high energy and short laser pulses. The third chapter describes the development of such a laser system, the appeared and solved problems. The non linear effects and the energy losses are always the hardest problems at an amplifier system. Because of the necessary pulse stretching and compression, the pulse suffers significant energy loss. The non-linear affects cause spectral narrowing in the amplifier crystal. These disadvantages can be compensated and corrected by the use of the pulse shaping techniques, like the acustooptic modulator, LCD. The end of the chapter describes results of the development: after optimisation all of the possible parameters were measured, the energy and the duration of the output pulse: 3 mJ at 12 fs. The first application of the system was the High Harmonic Generation. The conventional technique based on a gas target, in which the laser beam is focused strongly. The fourth chapter describes the theoretic possibilities and limits of the process: in the microscopic (HH generation) and the macroscopic (pulse propagation) metric. These drawbacks can be compensated by the non adiabatic self phase matching, which was already detailed in the literature. This technique based on the strongly focusing of the very short laser pulses into the gas target and its application made possible to generate X-ray photons up to 3.5 keV. With these pulses were carried out the static spectroscopic experiments. The recorded spectra shows nice absorption edges at the Titanium, Copper, Neon and Platinum. The number of the genereated X-ray photons was enough to make EXAFS measurements. The fifth chapter shows the measured spectra, the evaluated EXAFS spectra with the estimated atomic distances of the silicon, titanium and copper. The time resolution of the pump-probe measurements was less than 20 fs. It was realized in two regimes: from 0-100 ps and from 0-1ps. The determined time constants are in good agreement with the literature values.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Enikõ Seres
URN:urn:nbn:de:bvb:20-opus-16417
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Physik und Astronomie
Faculties:Fakultät für Physik und Astronomie / Physikalisches Institut
Date of final exam:2005/12/13
Language:German
Year of Completion:2005
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
GND Keyword:Röntgenabsorptionsspektroskopie; Femtosekundenspektroskopie
Tag:HHG; fs; keV; zeitaufgelöste Spektroskopie
HHG; fs; keV; timeresolved spectroscopy
Release Date:2006/01/17
Advisor:Prof. Dr. Christian Spielmann