Growth and characterization of NiMnSb-based heterostructures

Wachstum und Charaktersisierung von NiMnSb-basierenden Heterostrukturen

Please always quote using this URN: urn:nbn:de:bvb:20-opus-17771
  • In this work heterostructures based on the half-Heusler alloy NiMnSb have been fabricated and characterized. NiMnSb is a member of the half-metallic ferromagnets, which exhibit an electron spin-polarization of 100% at the Fermi-level. For fabrication of these structures InP substrates with surface orientations of (001),(111)A and (111)B have been used. The small lattice mismatch of NiMnSb to InP allows for pseudomorphic layers, the (111) orientation additionally makes the formation of a half-metallic interface possible. For the growth onIn this work heterostructures based on the half-Heusler alloy NiMnSb have been fabricated and characterized. NiMnSb is a member of the half-metallic ferromagnets, which exhibit an electron spin-polarization of 100% at the Fermi-level. For fabrication of these structures InP substrates with surface orientations of (001),(111)A and (111)B have been used. The small lattice mismatch of NiMnSb to InP allows for pseudomorphic layers, the (111) orientation additionally makes the formation of a half-metallic interface possible. For the growth on InP(001), procedures for the substrate preparation, growth of the lattice matched (In,Ga)As buffer layer and of the NiMnSb layer have been developed. The effect of flux-ratios and substrate temperatures on the MBE growth of the buffer as well as of the NiMnSb layer have been investigated and the optimum conditions have been pointed out. NiMnSb grows in the layer-by-layer Frank-van der Merwe growth mode, which can be seen by the intensity oscillations of the RHEED specular spot during growth. RHEED and LEED measurements show a flat surface and a well-defined surface reconstruction. High resolution x-ray measurements support this statement, additionally they show a high crystalline quality. Measurements of the lateral and the vertical lattice constant of NiMnSb films on (001) oriented substrates show that layers above a thickness of 20nm exhibit a pseudomorphic as well as a relaxed part in the same layer. Whereas layers around 40nm show partly relaxed partitions, these partitions are totally relaxed for layers above 100nm. However, even these layers still have a pseudomorphic part. Depth-dependent x-ray diffraction experiments prove that the relaxed part of the samples is always on top of the pseudomorphic part. The formation and propagation of defects in these layers has been investigated by TEM. The defects nucleate early during growth and spread until they form a defect network at a thickness of about 40nm. These defects are not typical misfit dislocations but rather antiphase boundaries which evolve in the Mn/Sb sublattice of the NiMnSb system. Dependent on the thickness of the NiMnSb films different magnetic anisotropies can be found. For layers up to 15nm and above 25nm a clear uniaxial anisotropy can be determined, while the layers with thicknesses in between show a fourfold anisotropy. Notably the easy axis for the thin layers is perpendicular to the easy axis observed for the thick layers. Thin NiMnSb layers show a very good magnetic homogeneity, as can be seen by the very small FMR linewidth of 20Oe at 24GHz. However, the increase of the linewidth with increasing thickness shows that the extrinsic damping gets larger for thicker samples which is a clear indication for magnetic inhomogeneities introduced by crystalline defects. Also, the magnetic moment of thick NiMnSb is reduced compared to the theoretically expected value. If a antiferromagnetic material is deposited on top of the NiMnSb, a clear exchange biasing of the NiMnSb layer can be observed. In a further step the epitaxial layers of the semiconductor ZnTe have been grown on these NiMnSb layers, which enables the fabrication of NiMnSb/ZnTe/NiMnSb TMR structures. These heterostructures are single crystalline and exhibit a low surface and interface roughness as measured by x-ray reflectivity. Magnetic measurements of the hysteresis curves prove that both NiMnSb layers in these heterostructures can switch separately, which is a necessary requirement for TMR applications. If a NiMn antiferromagnet is deposited on top of this structure, the upper NiMnSb layer is exchange biased by the antiferromagnet, while the lower one is left unaffected. Furthermore the growth of NiMnSb on (111) oriented substrates has been investigated. For these experiments, InP substrates with a surface orientation of (111)A and (111)B were used, which were miscut by 1 to 2° from the exact orientation to allow for smoother surfaces during growth. Both the (In, Ga)As buffer as well as the NiMnSb layer show well defined surface reconstructions during growth. X-ray diffraction experiments prove the single crystalline structure of the samples. However, neither for the growth on (111)A nor on (111)B a perfectly smooth surface could be obtained during growth, which can be attributed to the formation of pyramid-like facets evolving as a result of the atomic configuration at the surface. A similar relaxation behavior as NiMnSb layers on (001) oriented InP could not be observed. RHEED and x-ray diffraction measurements show that above a thickness of about 10nm the NiMnSb layer begins to relax, but remnants of pseudomorphic parts could not be found. Magnetic measurements show that the misorientation of the substrate crystal has a strong influence on the magnetic anisotropies of NiMnSb(111) samples. In all cases a uniaxial anisotropy could be observed. The easy axis is always aligned parallel to the direction of the miscut of the substrate.show moreshow less
  • Im Rahmen dieser Arbeit wurden Heterostrukturen basierend auf dem Halb-Heusler Material NiMnSb hergestellt und charakterisiert. NiMnSb ist ein Mitglied der halbmetallischen Ferromagnete, die sich durch eine 100% Spinpolarisation an der Fermikante auszeichnen. Zur Herstellung der Strukturen wurden InP Substrate der Orientierungen (001), (111)A und (111) B verwendet. Die geringe Gitterfehlanpassung von NiMnSb an InP erlaubt pseudomorphe Strukturen, die (111) Orientierung ermöglicht zusätzlich die Entstehung eines halb-metallischen Interfaces. FürIm Rahmen dieser Arbeit wurden Heterostrukturen basierend auf dem Halb-Heusler Material NiMnSb hergestellt und charakterisiert. NiMnSb ist ein Mitglied der halbmetallischen Ferromagnete, die sich durch eine 100% Spinpolarisation an der Fermikante auszeichnen. Zur Herstellung der Strukturen wurden InP Substrate der Orientierungen (001), (111)A und (111) B verwendet. Die geringe Gitterfehlanpassung von NiMnSb an InP erlaubt pseudomorphe Strukturen, die (111) Orientierung ermöglicht zusätzlich die Entstehung eines halb-metallischen Interfaces. Für das Wachstum auf InP(001) wurden Prozeduren für die Substratvorbereitung, die Herstellung des gitterangepassten (In, Ga)As und des NiMnSb entwickelt. Sowohl der Einfluss der Flussverhältnisse als auch der Substrattemperatur wurden erforscht und die optimalen Parameter ermittelt. NiMnSb wächst im Frank-van der Merwe Modus, der sich durch Oszillationen des Spekularreflexes bei RHEED Messungen auszeichnet. Untersuchungen der Oberfläche mittels LEED zeigen eine wohldefinierte Rekonstruktion sowie eine niedrige Oberflächenrauhigkeit. Hochauflösende Röntgenbeugungsexperimente unterstützen diese Aussage, zusätzliche zeigen sie eine hohe kristalline Qualität der Schichten. Messungen der NiMnSb Gitterkonstante in lateraler sowie vertikaler Richtung zeigen, dass in allen Schichten dicker als 20 nm sowohl pseudomorphe als auch relaxierte Teilbereiche existieren. Während Schichten um 40 nm teilrelaxierte Bereiche aufweisen, sind diese Bereiche bei Schichten über 100 nm vollständig relaxiert. Tiefenabhängige Röntgenbeugungsexperimente beweisen, dass der relaxierte Teil der NiMnSb Schicht immer über dem pseudomorphen Teil liegt. Die Ausbreitung von Kristalldefekten wurde durch TEM untersucht. Dabei zeigte sich, dass diese Defekte schon sehr bald während des Wachstums entstehen und sich immer weiter ausbreiten, bis sie bei einer Dicke von etwa 40 nm überlappen. Bei diesen Defekten handelt es sich nicht um typische Versetzungen, die aufgrund der Gitterfehlanpassung entstehen, sondern sehr wahrscheinlich um Antiphasen Grenzen die sich im Mn/Sb Untergitter des NiMnSb ausbilden. Zusätzlich zur hohen kristallinen Qualität der NiMnSb Schichten zeigen auch magnetische Messungen eine hohe Homogenität. Die Curie-Temperatur liegt erwartungsgemäß weit über Raumtemperatur. Die Schichten zeigen verschiedene Anisotropien abhängig von der Dicke der Schicht, uniaxiale Anisotropien wurden für Schichten dünner als 15 bzw. dicker als 25 nm beobachtet, dazwischen bildet sich eine Vierfach-Anisotropie aus. Mit steigender Dicke konnte auch eine Abnahme der magnetischen Homogenität beobachtet werden, was auf die Zunahme der Defektdichte bei dickeren Schichten zurückgeführt werden kann. Scheidet man auf dem NiMnSb-Ferromagneten einen Antiferromagneten bestehend aus NiMn ab, so kann der „Exchange Bias“ Effekt beobachtet werden. Auf diese NiMnSb Schichten wurde in einem weiteren Schritt der Halbleiter ZnTe epitaktisch gewachsen, wodurch die Herstellung von NiMnSb/ZnTe/NiMnSb TMR Strukturen ermöglicht wurde. Diese Schichten sind einkristallin und zeichnen sich durch kleine Oberflächen- und Grenzflächenrauhigkeiten aus. Magnetische Messungen dieser Heterostrukturen zeigen, dass beide ferromagnetische Schichten separat schalten können, eine der Grundvoraussetzung für die Beobachtung des TMR Effekts. Bringt man auf diese Strukturen einen Antiferromagneten auf, so kann eine „Exchange Bias“ Wechselwirkung mit der oberen NiMnSb-Schicht beobachtet werden, während die untere unbeeinträchtigt bleibt. In einem weiteren Teil der Arbeit wurde das Wachstum von NiMnSb auf (111) orientierten Substraten untersucht. Dazu wurden InP Kristalle der Orientierung (111)A und (111)B verwendet, die um 1-2° von der exakten Orientierung abweichen, um ein glatteres Wachstum zu ermöglichen. Sowohl die (In,Ga)As als auch NiMnSb-Schichten zeigen wohldefinierte Rekonstruktionen während des Wachstums. Röntgenbeugungsexperimente zeigen die einkristalline Struktur der Proben. Weder für das Wachstum auf InP(111)A noch auf InP(111)B konnte jedoch perfekt glatte Oberflächen während des Wachstums erzielt werden, was auf die Entstehung von pyramidenartigen Facetten aufgrund der Atomkonfiguration an der (111) Oberfläche zurückgeführt werden kann. Ein ähnliches Relaxationsverhalten wie für NiMnSb Schichten auf InP(001) konnte nicht beobachtet werden. Schichten oberhalb einer Dicke von ca. 10 nm beginnen während des Wachstums komplett zu relaxieren, was durch RHEED und Röntgenbeugungsexperimente belegt wurde. Magnetische Messungen ergaben, dass sich die Fehlorientierung der Substratkristalle stark auf das Anisotropieverhalten der NiMnSb(111) Proben auswirkt. In allen Fällen konnte eine uniaxiale Anisotropie beobachtet werden, die sich jeweils senkrecht zur Richtung der Fehlorientierung befindet.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Peter Bach
URN:urn:nbn:de:bvb:20-opus-17771
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Physik und Astronomie
Faculties:Fakultät für Physik und Astronomie / Physikalisches Institut
Date of final exam:2006/05/05
Language:English
Year of Completion:2006
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
GND Keyword:Nickelverbindungen; Manganverbindungen; Antimonverbindungen; Heterostruktur
Tag:Halbmetalle; MBE; Spintronic
MBE; halfmetals; spintronics
PACS-Classification:70.00.00 CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES / 75.00.00 Magnetic properties and materials (for magnetic properties of quantum solids, see 67.80.dk; for magnetic properties related to treatment conditions, see 81.40.Rs; for magnetic properties of superconductors, see 74.25.Ha; for magnetic properties of rocks a / 75.70.-i Magnetic properties of thin films, surfaces, and interfaces (for magnetic properties of nanostructures, see 75.75.+a) / 75.70.Cn Magnetic properties of interfaces (multilayers, superlattices, heterostructures)
Release Date:2006/05/22
Advisor:Prof. Laurens Molenkamp