Photodissoziation und dissoziative Photoionisation von Kohlenwasserstoff-Radikalen

Photodissociation and dissociative photoionisation of hydrocarbon radicals

Please always quote using this URN: urn:nbn:de:bvb:20-opus-18563
  • In dieser Arbeit wurde das Dissoziationsverhalten kleiner organischer Kohlenwasserstoffradikale untersucht. Zum einen wurde die dissoziative Photoionisation des Allyl-, Propargyl- und Ethylradikals durch die Verbindung einer herkömmlichen, gepulsten Pyrolysequelle mit Synchrotronstrahlung untersucht. Zum anderen wurden von verschiedenen Propyl- und Butyl-Radikalisomeren die Raten des Wasserstoffverlustes bei Anregung mit 239 nm gemessen. Es konnte gezeigt werden, dass die Kombination einer gepulsten Radikalquelle mit SynchrotronstrahlungIn dieser Arbeit wurde das Dissoziationsverhalten kleiner organischer Kohlenwasserstoffradikale untersucht. Zum einen wurde die dissoziative Photoionisation des Allyl-, Propargyl- und Ethylradikals durch die Verbindung einer herkömmlichen, gepulsten Pyrolysequelle mit Synchrotronstrahlung untersucht. Zum anderen wurden von verschiedenen Propyl- und Butyl-Radikalisomeren die Raten des Wasserstoffverlustes bei Anregung mit 239 nm gemessen. Es konnte gezeigt werden, dass die Kombination einer gepulsten Radikalquelle mit Synchrotronstrahlung technisch umsetzbar ist. Der Vorteil dieser Methode liegt darin, dass es möglich ist, die Radikale über einen kontinuierlichen Energiebereich von mehreren eV innerhalb kurzer Zeit zu betrachten, was mit einem normalen Labor-Aufbau mit Farbstofflasern nicht möglich ist. So konnten anhand von Photoelektronenspektren und Photoionisationseffizienzkurven die Ionisierungsenergie des Allyl-, des Propargyl- und des Ethyl-Radikals in guter Übereinstimmung zu älteren Literaturdaten bestätigt werden. Anhand von Messungen zur dissoziativen Photoionisation konnte gezeigt werden, dass das Allyl und das Ethyl wie angenommen ein Wasserstoff-Molekül abspalten. Beim Allyl gibt es hierbei zwei mögliche Dissoziationsprodukte: das Cyclopropyl- und das Propargyl-Kation. Einfache RRKM-Rechnungen deuten darauf hin, dass bei geringen Überschussenergien das Cyclopropenyl-, bei größeren hingegen bevorzugt das Propargyl-Kation gebildet wird. Das Ethyl-System besitzt einen nicht-klassischen, überbrückten ionischen Zustand. Die dissoziative Photoionisation führt zum Vinyl-Kation und setzt bei deutlich höheren Energien ein, als von der Theorie vorhergesagt. Alle Erklärungsversuche sind unbefriedigend, daher sollten hier weitere experimentelle und theoretische Untersuchungen angeschlossen werden. Die dissoziative Photoionisation des Propargyl-Radikals besitzt, theoretischen Berechnungen zufolge, zwei konkurrierende Zerfallskanäle. Wie die Experimente jedoch zeigten, erfolgt nur die Abspaltung von H unter Bildung des Cyclopropenyliden-Kations im vorhergesagten Energiebereich. Der Konkurrenzprozess, Bildung von Propinyliden und H$_2$, setzt erst bei deutlich höheren Photonenenergien ein. Daneben konnte erstmals der Dreikörperzerfall des Propargylbromids und des Ethyliodids zum Propinyliden- respektive Vinyl-Kation beobachtet und die Auftrittsenergien bestimmt werden. Diese stimmen gut mit den thermochemischen Vorhersagen überein. In Zukunft ist geplant, mit ZEKE-Spektroskopie die Ionisierungsenergien der untersuchten Radikale exakt zu bestimmen. Insbesondere beim Ethyl-Radikal mit seinem nicht-klassischen Verhalten muss noch viel geklärt werden. Des Weiteren ist geplant, weitere Experimente am Synchrotron durchzuführen. Denkbar wäre hier, Ionen in definierten, schwingungsangeregten Zuständen zu erzeugen und an ihnen Ionen-Molekül-Reaktionen durchzuführen. Ausgehend von den jeweiligen Azoalkanen wurden die Wasserstoff-Disso"-zia"-tions"-raten der \n-Propyl-, \n-Butyl- und \sec-Butyl-Radikale bei einer Anregungswellenlänge von 239 nm gemessen. Ähnlich wie dies bereits bei früheren Messungen am \tert-Butyl- und Ethyl-Radikal der Fall war, waren diese Raten um 2--3 Größenordnungen schneller als von einfachen RRKM-Rechnungen vorhergesagt. %Eine mögliche Erklärung wäre ein konkurrierender %Deaktivierungskanal, z.B.\ der C--C-Bindungsbruch im Radikal. Da %jedoch der Wasserstoffverlust von einem der Spaltprodukte nicht in %einem Einphotonenprozess zu bewerkstelligen ist, muss dieser Kanal %ausgeschlossen werden. Ein anderer, noch sehr spekulativer %Erklärungsversuch geht von einem langlebigen 3p-Zustand, der ein %Minimum in der Geometrie mit einer verlängerten C--C-Bindung %darstellt, aus. Koppelt dieser Zustand mit dem darunterliegenden %3s-Zustand, kann es zur Deaktivierung kommen, jedoch nur, wenn die %Überschussenergie ausreichend groß ist. Dies würde das Verhalten der %Dissoziationsrate bei den Propyl- und Butyl-Radikalisomeren sowie dem %Ethylradikal erklären. Es wurde eine sehr spekulative Erklärung vorgestellt, die dieses Verhalten erklären könnte. Die vorliegenden Daten können diese Theorie aber weder bestätigen noch widerlegen. Es sieht jedoch so aus, als ob diese Diskrepanz zwischen Theorie und Experiment ein allgemeines Phänomen in Alkylradikalen darstellt. Um diese Theorie weiter zu erhärten, kann man einerseits noch weitere Alkylradikale untersuchen, ob sie ähnliche Differenzen zwischen Experiment und Theorie zeigen. Andererseits sollten auch bei den Propyl- und Butylradikalen Experimente mit unterschiedlichen Anregungswellenlängen durchgeführt werden um zu klären, ob sie sich analog zum \tert-Butyl- und Ethylradikal verhalten.show moreshow less
  • In this work the dissociation behaviour of small organic hydrocarbon radicals was investigated. On the one hand the dissociative photoionisation of the allyl, propargyl and ethyl radicals was investigated by the combination of a conventional, pulsed radical source with synchrotron radiation. On the other hand the rates of hydrogen loss from various propyl and butyl isomers were measured with an excitation wavelength of 239 nm. It could be shown that the combination of a pulsed radical source with synchrotron radiation is technically possible.In this work the dissociation behaviour of small organic hydrocarbon radicals was investigated. On the one hand the dissociative photoionisation of the allyl, propargyl and ethyl radicals was investigated by the combination of a conventional, pulsed radical source with synchrotron radiation. On the other hand the rates of hydrogen loss from various propyl and butyl isomers were measured with an excitation wavelength of 239 nm. It could be shown that the combination of a pulsed radical source with synchrotron radiation is technically possible. The advantage of this method is the possibility to investigate radicals over a continuous energy range of several eV within a short duration. This is not possible with a normal laboratory setup. By means of the photoelectron spectra and photoion efficiency curves the ionisation potentials of the allyl, propargyl and ethyl radicals could be measured in good agreement with older literature data. It could be shown that the allyl and the ethyl lose a hydrogen molecule -- as suspected -- upon dissociative photoionisation. For the allyl there are two possible dissociation products: the cyclopropenyl and the propargyl cations. Simple RRKM calculations indicate that at low excess energies the cyclopropenyl, and at higher excess energies the propargyl cation is formed preferentially. The ethyl system has a non-classical bridged ionic state. The dissociative photoionisation leads to the vinyl cation and starts at much higher energies than predicted by theory. All explanation attempts are unsatisfying. Therefore further experimental and theoretical studies should consecute. The dissociative photoionisation of the propargyl radical has, according to theoretical studies, two competing decay channels. But the experiments showed that only the loss of H and the formation of the cyclopropenylidene cation occurs in the predicted energy range. The competing channel, loss of H$_2$ and formation of propenylidene, starts at much higher photon energies. Besides this the three body decay of the propargylbromide and the ethyl\-iodide to the propinylidene and the vinyl cations could be observed. The appearence energies could also be measured. They are in good agreement with thermochemical predictions. For the future it is planned to determine the ionisation potentials of the observed radicals exactly with ZEKE spectroscopy. Especially the ethyl radical with its non-classical behaviour needs further examination. Furthermore it is planned to do additional experiments at the synchrotron. It is thinkable to produce ions in well-defined, vibrationally excited states to carry out ion-molecule reactions with them. The hydrogen dissociation rates of the \n-propyl, \n-butyl and \sec-butyl radicals were measured with an excitation wavelength of 239 nm. Similar to earlier measurements with the \tert-butyl and ethyl radicals the observed rates were \mbox{faster} in the order of 2--3 magnitudes than predicted by simple RRKM calculations. A very speculative explanation was presented that could explain this behaviour. The available data can neither confirm nor disprove this theory. It seems that this discrepancy between experiment and theory is a common phenomenon in alkyl radicals. To substantiate this theory more alkyl radicals could be examined for this difference between experiment and theory. But also for the propyl and butyl radical isomers experiments with different excitation wavelengths should be carried out.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Thomas Schüßler
URN:urn:nbn:de:bvb:20-opus-18563
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Chemie und Pharmazie
Faculties:Fakultät für Chemie und Pharmazie / Institut für Physikalische und Theoretische Chemie
Date of final exam:2006/07/17
Language:German
Year of Completion:2006
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
GND Keyword:Photodissoziation; Photoionisation; Allylradikal; Ethylradikal
Tag:Allyl; Ethyl; Photodissoziation; Photoionisation; Propargyl
allyl; ethyl; photodissociation; photoionisation; propargyl
Release Date:2006/07/18
Advisor:Prof. Dr. Ingo Fischer