Development and Applications of Efficient Strategies for Parallel Magnetic Resonance Imaging

Entwicklung und Anwendungen von effizienten Strategien in der Parallelen Magnetresonanztompgraphie

Please always quote using this URN: urn:nbn:de:bvb:20-opus-20683
  • Virtually all existing MRI applications require both a high spatial and high temporal resolution for optimum detection and classification of the state of disease. The main strategy to meet the increasing demands of advanced diagnostic imaging applications has been the steady improvement of gradient systems, which provide increased gradient strengths and faster switching times. Rapid imaging techniques and the advances in gradient performance have significantly reduced acquisition times from about an hour to several minutes or seconds. In orderVirtually all existing MRI applications require both a high spatial and high temporal resolution for optimum detection and classification of the state of disease. The main strategy to meet the increasing demands of advanced diagnostic imaging applications has been the steady improvement of gradient systems, which provide increased gradient strengths and faster switching times. Rapid imaging techniques and the advances in gradient performance have significantly reduced acquisition times from about an hour to several minutes or seconds. In order to further increase imaging speed, much higher gradient strengths and much faster switching times are required which are technically challenging to provide. In addition to significant hardware costs, peripheral neuro-stimulations and the surpassing of admissable acoustic noise levels may occur. Today’s whole body gradient systems already operate just below the allowed safety levels. For these reasons, alternative strategies are needed to bypass these limitations. The greatest progress in further increasing imaging speed has been the development of multi-coil arrays and the advent of partially parallel acquisition (PPA) techniques in the late 1990’s. Within the last years, parallel imaging methods have become commercially available,and are therefore ready for broad clinical use. The basic feature of parallel imaging is a scan time reduction, applicable to nearly any available MRI method, while maintaining the contrast behavior without requiring higher gradient system performance. PPA operates by allowing an array of receiver surface coils, positioned around the object under investigation, to partially replace time-consuming spatial encoding which normally is performed by switching magnetic field gradients. Using this strategy, spatial resolution can be improved given a specific imaging time, or scan times can be reduced at a given spatial resolution. Furthermore, in some cases, PPA can even be used to reduce image artifacts. Unfortunately, parallel imaging is associated with a loss in signal-to-noise ratio (SNR) and therefore is limited to applications which do not already operate at the SNR limit. An additional limitation is the fact that the coil array must provide sufficient sensitivity variations throughout the object under investigation in order to offer enough spatial encoding capacity. This doctoral thesis exhibits an overview of my research on the topic of efficient parallel imaging strategies. Based on existing parallel acquisition and reconstruction strategies, such as SENSE and GRAPPA, new concepts have been developed and transferred to potential clinical applications.show moreshow less
  • In den späten 80er Jahren entwickelte sich die Magnetresonanz-Tomographie (MRT), die bis dato lediglich in Forschungseinrichtungen etabliert war, zu einem der wichtigsten Verfahren in der klinischen Diagnostik. Allerdings erfordern nahezu alle bestehenden klinischen Anwendungsgebiete sowohl eine hohe räumliche als auch eine hohe zeitliche Auflösung für eine optimale Detektion und Klassifizierung von Krankheitsbildern. Der bisherige Ansatz, diesen zunehmenden Anforderungen an die klinische MRT gerecht zu werden, bestand vor allem in der stetigenIn den späten 80er Jahren entwickelte sich die Magnetresonanz-Tomographie (MRT), die bis dato lediglich in Forschungseinrichtungen etabliert war, zu einem der wichtigsten Verfahren in der klinischen Diagnostik. Allerdings erfordern nahezu alle bestehenden klinischen Anwendungsgebiete sowohl eine hohe räumliche als auch eine hohe zeitliche Auflösung für eine optimale Detektion und Klassifizierung von Krankheitsbildern. Der bisherige Ansatz, diesen zunehmenden Anforderungen an die klinische MRT gerecht zu werden, bestand vor allem in der stetigen Verbesserung von Gradientensystemen die mit immer höheren Gradientenstärken und schnelleren Schaltzeiten aufwarteten. Die technischen Fortschritte, sowie schnelle Bildgebungsmethoden erlaubten es, Messzeiten von etwa einer Stunde auf nur wenige Minuten oder sogar Sekunden zu reduzieren. Eine weitere Verkürzung der Experimentdauer mittels noch leistungsfähigeren Gradientensystemen ist jedoch technisch schwierig zu realisieren. Ausserdem gehen enorm hohe Entwicklungs und Materialkosten mit den erhöhten Anforderungen einher. Es kommt hinzu, dass noch stärkere Gradienten und noch schnellere Schaltzeiten zu peripheren Neurostimulationen und zur Überschreitung von zulässigen akustischen Grenzwerten führen können. Heutige Gradientensysteme arbeiten schon sehr nahe an den Grenzen der zulässigen Sicherheitsbestimmungen. Deshalb werden alternative Strategien benötigt, um weitere Messzeitverkürzungen realisieren zu können. Der bisher erfolgreichste Ansatz bestand in der Entwicklung von Mehr-Kanal-Spulen-Anordnungen und damit verknüpft der darauffolgenden Einführung der parallellen Bildgebung in den späten 90er Jahren. In den letzten 5 Jahren haben sich parallele Bildgebungsmethoden an den klinischen Tomographen etabliert und nahezu alle Herstellerfirmen stellen diese Technik kommerziell zur Verfügung. Die parallele Bildgebung ermöglicht eine Messzeitverkürzung, die prinzipiell auf jede bestehende Bildgebungsmethode angewendet werden kann, ohne dabei das Kontrastverhalten zu verändern und ohne höhere Gradientenleistung zu beanspruchen. In der parallellen Bildgebung übernimmt die Mehr-Kanal-Spulen-Anordnung teilwiese die Ortskodierung, die normalerweise durch zeitaufwendiges Schalten von Magnetfelgradienten erzeugt wird. Mit dieser Strategie kann bei gleicher Messzeit die örtliche Auflösung verbessert, oder bei gleicher Auflösung die Messzeit verkürzt werden. Ausserdem können mit hilfe der parallelen MRT in manchen Fällen Bildartefakte signifikant reduziert werden. Allerdings ist mit der parallelen Bildgebung immer ein Signal zu Rausch (SNR) Verlust verbunden, der diese Methode auf klinische Anwendungen begrenzt, die nicht bereits am SNR-Limit betrieben werden. Ausserdem muß die Spulenanordnung genug Sensitivitätsvariationen über das zu untersuchende Objekt bereitstellen, um ausreichende Kodierfunktion zu gewährleisten. Diese Dissertationsarbeit liefert einen Überblick über meine Forschungsarbeit zum Thema “Entwicklung und Anwendung von effizienten Strategien in der parallelen MRT”. Basierend auf bestehenden parallelen Akquisitions und Rekonstruktionstechniken, wie beispielsweise SENSE und GRAPPA, wurden neue Konzepte entwickelt und auf mögliche klinische Fragestellungen angewandt.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Felix Breuer
URN:urn:nbn:de:bvb:20-opus-20683
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Physik und Astronomie
Faculties:Fakultät für Physik und Astronomie / Physikalisches Institut
Date of final exam:2006/11/14
Language:English
Year of Completion:2006
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
GND Keyword:NMR-Bildgebung; Paralleler Prozess
Tag:CAIPIRINHA; GRAPPA; Parallele Bildgebung; SENSE; TGRAPPA; dynamische Bildgebung
CAIPIRINHA; GRAPPA; Parallel imaging; SENSE; TGRAPPA; dynamic imaging
Release Date:2006/12/07
Advisor:Prof. Dr. Peter Jakob