Molekulare Charakterisierung und entwicklungsspezifische Expression der Kernmembranproteine Emerin und MAN1 im Tiermodell Xenopus laevis
Molecular characterization and developmental expression of the nuclear membrane proteins ,emerin’ and ,MAN1’ in the model system Xenopus laevis
Please always quote using this URN: urn:nbn:de:bvb:20-opus-19869
- Mutationen im humanen Emerin-Gen verursachen beim Menschen eine angeborene Muskelschwäche, die X-gebundene Emery-Dreifuss. Der Phänotyp dieser Störung manifestiert sich in der zweiten und dritten Lebensdekade durch Verkürzungen der Nacken , Ellenbogen- und Achillessehnen, progressiven Muskelschwund am Oberkörper sowie Störung der Reizweiterleitung und eine Kardiomyopathie. Zwar wurden die Funktionen dieses ubiquitären Kernmembranproteins bislang intensiv erforscht, allerdings blieben die krankheitsverursachenden Mechanismen, die für den spätenMutationen im humanen Emerin-Gen verursachen beim Menschen eine angeborene Muskelschwäche, die X-gebundene Emery-Dreifuss. Der Phänotyp dieser Störung manifestiert sich in der zweiten und dritten Lebensdekade durch Verkürzungen der Nacken , Ellenbogen- und Achillessehnen, progressiven Muskelschwund am Oberkörper sowie Störung der Reizweiterleitung und eine Kardiomyopathie. Zwar wurden die Funktionen dieses ubiquitären Kernmembranproteins bislang intensiv erforscht, allerdings blieben die krankheitsverursachenden Mechanismen, die für den späten Ausbruch der gewebespezifischen Erkrankung verantwortlich sind, noch weitestgehend unverstanden. Um Erkenntnisse über die pathologische(n) Funktion(en) des integralen Membranproteins Emerin zu gewinnen, wurde dessen spatio-temporäre Transkriptions- und Expressionsmuster während der frühen Embryonalentwicklung im Modellsystem Xenopus laevis charakterisiert. Durch EST-Datenbankanalysen konnten in der pseudotetraploiden Spezies zwei Emerin-Gene (Xemerin1 und -2) identifiziert werden. Im Unterschied zu dem längeren Säuger-Emerin (254 Reste bei Homo sapiens ) konnte allerdings kein Kernlokalisationssignal und auch kein serinreicher Sequenzbereich festgestellt werden. Durch Herstellung monoklonaler Antikörper wurde die subzelluläre und gewebespezifische Lokalisation der Xemerin-Proteine untersucht. Interessanterweise war Xemerin weder in der Immunfluoreszenz noch im Immunblot in Oozyten nachweisbar. Mit dem zweidimensionalen Gelektrophorese-Verfahren NEPHGE konnte gezeigt werden, dass der von uns hergestellte monoklonale Antikörper 59/7 beide Xemerin-Formen erkannte und die Proteine durch unterschiedliche molekulare Massen und isoelektrische Punkte voneinander zu trennen waren. Durch Immunoblotting embryonaler Proteine aus unterschiedlichen Entwicklungsstadien konnte gezeigt werden, dass Xemerin1 und -2 im Laufe der Embryogenese von Xenopus laevis erstmals im Entwicklungsstadium 43 exprimiert werden. Unerwarteterweise konnte durch RT-PCR-Analysen eine Aktivität der Xemerin-Gene während der gesamten Embryogenese belegt werden. Northernblot- und Sequenzanalysen der Xemerin-mRNA zeigten außerordentlich große untranslatierte Bereiche mit snRNP-Bindungsmotiven. Durch zwei voneinander unabhängige Analyseverfahren wurde festgestellt, dass die Xemerin-Genaktivität ab dem Stadium 30 deutlich zunahm. Äußerst interessant war in diesem Zusammenhang die Beobachtung, dass exakt zu diesem Zeitpunkt die Aktivität des XMAN1-Gens, einem weiteren Protein der inneren Kernmembran, signifikant herunterreguliert wurde. Whole-mount in situ Hybridisierungsversuche zeigten einen Xemerin-Expressionsschwerpunkt in neuro-ektodermalen Geweben von Tadpole-Embryonen, wie dies auch von XMAN1 (auch SANE genannt) berichtet wurde. Aufgrund dieser Erkenntnisse wurde angenommen, dass Xemerin und XMAN1 überlappende Funktionen aufweisen. Durch die Herstellung rekombinanter Fusionproteine konnte gezeigt werden, dass XMAN1 eine identische subzelluläre Verteilung wie Xemerin aufwies. In vitro Bindungsassays wiesen eine direkte Wechselwirkung von XMAN1 mit beiden Xemerin-Formen sowie mit Xenopus Lamin A nach. Diese Arbeit konnte durch die Charakterisierung von Xenopus Emerin die Grundlagen für weitere intensive Forschungen legen und zeigt eindeutig, dass das Modellsystem Xenopus laevis mit dem Säugermodell Maus konkurrenzfähig ist, um die krankheitsverursachende Mechanismen der Emery-Dreifuss Muskeldystrophie aufzuklären.…
- Mutations in the human emerin gene EMD cause a rare form of an inheritated muscle dysfunction of striated muscle, named Emery-Dreifuss muscular dystrophy (EDMD1; OMIM 310300). The clinical phenotype of this genetic perturbance is manifested in 2nd-3rd decade by contraction of the cervical, elbow and Achilles tendons, by progressive muscle wasting and disturbance of the conduction system and cardiomyopathy, often leading to sudden death. Extensive investigations were made on the functions of this ubiquitous nuclear membrane protein, but theMutations in the human emerin gene EMD cause a rare form of an inheritated muscle dysfunction of striated muscle, named Emery-Dreifuss muscular dystrophy (EDMD1; OMIM 310300). The clinical phenotype of this genetic perturbance is manifested in 2nd-3rd decade by contraction of the cervical, elbow and Achilles tendons, by progressive muscle wasting and disturbance of the conduction system and cardiomyopathy, often leading to sudden death. Extensive investigations were made on the functions of this ubiquitous nuclear membrane protein, but the disease causing mechanisms remain obscure leading to the late onset of this tissue specific disease. To allure insights of the pathological function(s) of emerin this work examines the spatio-temporal transcription and expression patterns of emerin during development of the vertebrate model Xenopus laevis. Sequence analysis of EST-databases identified two emerin genes in the pseudo-tetraploid organism Xenopus laevis, Xemerin1 and Xemerin2, respectively. In comparison to the human and murine orthologues Xenopus emerins exhibit both similarities and differences. Structural analyses revealed an N-terminal conserved LEM-domain in the C-terminus and a unique hydrophobic transmembrane domain in the carboxy tail. Unlike the extended mammalian emerin (Homo sapiens 254 residues, Mus musculus 259 residues) neither a nucleus localization signal nor a serinerich region could be detected. However, comparison of the putative phosphorylation sites showed three equivalent sites as for the human emerin. Synthesis of specific monoclonal antibodies and recombinant fusion proteins elucidate the subcellular and tissue-specific localization of Xemerins. Similar to mammalian emerins immunofluorescence microscopy and immunoblotting showed clearly that both Xemerin1 and Xemerin2 are integral nuclear membrane proteins expressing ubiquitously in differentiated cells. Intriguingly, in oocytes Xemerin was undetectable by immunofluorescence and immunoblotting, respectively. Two-dimensional gel electrophoresis NEPHGE proved that our self-made monoclonal antibody 59/7 recognized both Xemerins highlighting two different molecular masses and isoelectric points. Interestingly, Xemerin2 exhibits an increased isoelectric point in 5-days old larvae than in adult somatic culture cells. Immunoblotting of embryonic proteins derived from different developmental stages showed that Xemerin1 and -2 are expressed in stage 43 (Nieuwkoop and Faber, 1975) during Xenopus embryogenesis for the first time. In this context, it is noteworthy that Xenopus A-type lamins – in contrast to previous reports – are already detectable in stage 28. Unexpectedly, RT-PCR analyses proved activity of the Xemerin genes during entire embryogenesis in all stages examined yet. Northern-blotting and sequence analyses of the Xemerin mRNA revealed exceeding untranslated regions with snRNP binding motives. Two independent techniques (band-quantification and quantitative real-time-PCR) bared a significantly increased activity of the Xemerin-genes upon stage 30. Outstanding interest provided the awareness, that exactly at this moment the activity of XMAN1, another inner nuclear membrane protein, was significantly down regulated. Whole mount in situ hybridizations exhibited stressed Xemerin expression in neuro-ectodermal tadpole tissues, as simultaneously reported for XMAN1 (also known as SANE) by to other groups (Osada et al., 2003; Raju et al., 2003). Congruent expression patterns of Xemerin proteins were provided by indirect immunofluorescence of embryonic thin-sections. These results corroborate the theory that XMAN1 and Xemerin could have overlapping functions. At first, recombinant fusion proteins showed an identical subcellular distribution of XMAN1 in comparison with Xemerin. Hence, in vitro binding assays proved direct interaction between Xemerins and XMAN1 as well as with Xenopus A-type lamins. Unfortunately, there is no functional XMAN1 antibody available up to now. Thus, it remains unclear if XMAN1 has overlapping functions with Xemerins during embryogenesis in vivo. Nevertheless, by characterizing Xenopus emerin this work displayed fundamental features for further studies. This opus definitely showed that the model system Xenopus laevis is competitive to the mammalian model ‘mouse’ elucidating the disease causing mechanisms of Emery-Dreifuss muscular dystrophy.…
Author: | Martin Gareiß |
---|---|
URN: | urn:nbn:de:bvb:20-opus-19869 |
Document Type: | Doctoral Thesis |
Granting Institution: | Universität Würzburg, Fakultät für Biologie |
Faculties: | Fakultät für Biologie / Theodor-Boveri-Institut für Biowissenschaften |
Date of final exam: | 2006/12/04 |
Language: | German |
Year of Completion: | 2006 |
Source: | Gareiß, M., Eberhardt, K., Krüger, E., Kandert, S., Böhm, C., Zentgraf, H., Müller-Reible, C. R. and Dabauvalle, M. C. (2005). Emerin expression in early development of Xenopus laevis. Eur J Cell Biol 84, 295-309. |
Dewey Decimal Classification: | 5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie |
GND Keyword: | Glatter Krallenfrosch; Emerin; Oozyte |
Tag: | Embryonalentwicklung; Emerin; MAN1; Oozyte; Xenopus laevis MAN1; Xenopus laevis; early development; emerin; oocyte |
Release Date: | 2007/01/31 |
Advisor: | Prof. Dr. Marie-Christine Dabauvalle |