Rastertunnelspektroskopie an polykristallinen Cu(In,Ga)(S,Se)2-Dünnschichtsolarzellen

Scanning Tunneling Spectroscopy on polycrystalline Cu(In,Ga)(S,Se)2 thin-film solar cells

Please always quote using this URN: urn:nbn:de:bvb:20-opus-21291
  • [...] Bei dem hier untersuchten multinären System CIGSe stellt sich ob seiner polykristallinen Struktur zudem die Frage nach der lateralen Homogenität der elektrischen Eigenschaften. Mit der verwendeten Meßmethode, einer photounterstützten Rastertunnelspektroskopie, können Inhomogenitäten in der Oberflächenphotospannung (SPV) und im Photoinduzierten Tunnelstrom (PITC) nachgewiesen werden. Die Messung von PITC und SPV ist dann schnell durchzuführen und damit für Reihenuntersuchungen geeignet, wenn Modulationsverfahren verwendet werden.[...] Bei dem hier untersuchten multinären System CIGSe stellt sich ob seiner polykristallinen Struktur zudem die Frage nach der lateralen Homogenität der elektrischen Eigenschaften. Mit der verwendeten Meßmethode, einer photounterstützten Rastertunnelspektroskopie, können Inhomogenitäten in der Oberflächenphotospannung (SPV) und im Photoinduzierten Tunnelstrom (PITC) nachgewiesen werden. Die Messung von PITC und SPV ist dann schnell durchzuführen und damit für Reihenuntersuchungen geeignet, wenn Modulationsverfahren verwendet werden. Modulationen der Biasspannung und/oder der Beleuchtung wurden in der Tunnelspektroskopie bereits auf eine ganze Anzahl von Materialsystemen angewendet. Dabei auftretende, über die Kapazität zwischen Tunnelspitze und Probe einkoppelnde störende Signalbeiträge sind ein bekanntes Problem. Eine mögliche Lösung bietet die elektronische Kompensation durch eine entsprechende Schaltung. Wie in dieser Arbeit gezeigt wird, ist der Ansatz sehr gut geeignet, die durch Biasmodulation erzeugte Streukomponente zu unterdrücken. Wird dagegen die einfallende Beleuchtung moduliert, erfolgt die Kompensation nur unvollständig. Ein besonderes Problem bereitet dies, wenn beide Modulationen kombiniert werden. Der Unterschied zwischen beiden Modulationen liegt darin, daß sich das Spitze-Probe-System im Fall der Spannungsmodulation wie ein klassischer Kondensator verhält und das Streusignal daher unabhängig von der Art der Probe ist. Bei Lichtmodulation ist im Ersatzschaltbild dagegen die unter der Probenoberfläche befindliche Stromquelle zu berücksichtigen. Sie führt dazu, daß sich das Streusignal von Probe zu Probe, und sogar von einem Präparationszustand zum nächsten, deutlich unterscheidet. Daher ist es angebracht, das Streusignal separat zu messen und anschließend analytisch zu kompensieren. Wie aus der vorliegenden Arbeit hervorgeht, ist dabei die Abhängigkeit des Streusignals vom Spitze-Probe-Abstand unbedingt zu berücksichtigen. Nach der Etablierung und eingehenden Analyse des Verfahrens im ersten Teil folgt im zweiten Teil der Arbeit dessen Anwendung auf eine Reihe von unterschiedlichen CIGS-Proben. Dabei wird deutlich, daß die bereits angesprochenen Inhomogenitäten im PITC-Signal eine immanente Eigenschaft dieser (und vermutlich aller) polykristallinen Halbleitersysteme sind. Neben den lateralen Unterschieden in der Stromamplitude lassen sich auch Inhomogenitäten in der komplexen Phase des Photostroms nachweisen. Wie sich herausstellt, sind daraus aber wegen der dominierenden Admittanz der Tunnellücke keine Rückschlüsse auf die beteiligte Kapazität der RLZ zu ziehen. Dagegen ist es möglich, durch die Untersuchung einer größeren Zahl von Stellen auf einer Probe eine Statistik der Flächenhäufigkeit des PITC zu erstellen. Wird diese Verteilung durch eine exponentiell abfallende Häufigkeit beschrieben, weist dies auf eine übergroße Dichte an "schwachen" Dioden hin; bei einer kleinen Zahl schwacher Dioden zeigt die Verteilung ein deutliches Maximum bei höheren Photoströmen. Korngrenzen sind für die elektronischen Eigenschaften polykristalliner Systeme wichtig, ihre Struktur allerdings unbekannt. Aus dem Forschungsgebiet der ebenfalls polykristallinen CdS/CdTe-Solarzellen kommt die Vorstellung, daß die Korngrenzen bevorzugte Transportpfade der Ladungsträger darstellen; sie wird inzwischen auch für CIGS-Zellen diskutiert. Hunderte von untersuchten Probenstellen können diese Theorie jedoch nicht unterstützen. Nur in einer äußerst geringen Zahl von Fällen zeigen Korngrenzen einen deutlich höheren Photostrom im Vergleich zu den umgebenden Kornflächen. Desweiteren werden die abrupten lateralen Änderungen im PITC-Signal als nicht passivierte Korngrenzen interpretiert, die Transportbarrieren für die Minoritätsladungsträger bilden. Umgekehrt begünstigen passivierte Korngrenzen das Angleichen der elektronischen Eigenschaften benachbarter Körner. Verfolgt man die PITC-Werte über einen längeren Zeitraum hinweg, lassen sich metastabile Effekte beobachten. Das Abklingen des Photostroms wird durch den Einfang von Minoritätsladungsträgern in tiefen Störstellen erklärt. Vergleicht man die erhaltenen PITC-Werte mit dem makroskopischen Kurzschlußstrom der Zellen, kann man die erhoffte Korrelation nicht nachweisen. Wie sich herausstellt, haben die zur Vorbereitung für die STM-Messungen nötigen Präparationsschritte starke Auswirkung auf die Meßergebnisse. Aus dieser Sicht wäre eine in-situ-Messung wünschenswert. Daher schließen einige Gedanken hinsichtlich der Realisierung der Meßmethode zur in-situ-Qualitätskontrolle in der Solarzellenherstellung die Arbeit ab.show moreshow less
  • Solar cells will gain increasing relevance in energy industry within the next years. An enhancement in efficiency about tenths of percent is a great achievement for sophisticated silicon-based as well as for thin film solar cells. Therefore it is comprehensible that the improvement, hitherto mostly based on empirical methods, is increasingly backed by fundamental investigations. Moreover, in-situ process monitoring comes to the fore. In case of the investigated multinary CIGSe system with its polycrystalline structure, the question for theSolar cells will gain increasing relevance in energy industry within the next years. An enhancement in efficiency about tenths of percent is a great achievement for sophisticated silicon-based as well as for thin film solar cells. Therefore it is comprehensible that the improvement, hitherto mostly based on empirical methods, is increasingly backed by fundamental investigations. Moreover, in-situ process monitoring comes to the fore. In case of the investigated multinary CIGSe system with its polycrystalline structure, the question for the lateral homogeneity of its electronic properties arises. By means of the here presented method, a photo-assisted tunneling spectroscopy, such lateral inhomogeneities of the Surface Photo Voltage (SPV) and the Photo-Induced Tunneling Current (PITC) are to be detected. The investigation of PITC and SPV can be achieved swiftly, and therefore may qualify the technique for industrial usage, if modulation techniques are used. Modulations of the bias voltage and/or the illumination intensity have been applied to a greater number of materials in tunneling spectroscopy. Within these field, disturbing current contributions, coupled via the tip-sample-capacitance, is a known problem. Electronic compensation by using an appropriate compensating circuit is a possible solution. As will be shown in this work, such procedure is very adequate to compensate stray signals generated by bias modulation. On the contrary it is not sufficient to suppress disturbing currents caused by modulated illumination. A particular problem arises if both modulations are combined. Hence the two cases of modulation have to be distinguished. For bias modulation the tip-sample-system acts as a classical capacitor, which results in a stray signal independent of the nature of the investigated sample. When light modulation is concerned, the sub-surface current source has to be regarded within the equivalent circuit. This leads to a stray signal varying from one sample to the other; it even varies for different preparations of a single sample. Therefore it is advisable to detect the stray signal separately and subtract it analytically. As corroborated by this work, the dependence of the stray signals amplitude on the tip-sample-distance has to be taken into account. After the introduction and careful analysis of our technique in the first part the second part of the thesis deals with its application to a series of different CIGS samples. What becomes apparent is the aforementioned inhomogeneities in PITC signal to be an immanent property of these (and literally all) polycrystalline semiconductor systems. Besides lateral variations in the photocurrent amplitude, also inhomogeneities within its complex phase can be demonstrated. As becomes clear, it is impossible to draw conclusions about the participating capacity of the depletion region because of the dominating admittance of the tunneling junction. However, it is possible to gain a statistical distribution of the PITC by investigating a large number of positions on the sample. If the distribution is characterised by an exponential decay, this alludes to a supercritical density of weak diodes in the investigated absorber. For small numbers of weak diodes, the distribution exhibits a distinct maximum at higher photocurrents. Grain boundaries are of great importance for the electronic properties of polycrystalline systems, but their structure is unknown. From the field of CdS/CdTe solar cells originates the idea of such grain boundaries to be prominent conduction paths for charge carriers. In the meantime this idea is discussed in the CIGS community as well. With hundreds of investigated positions on various samples, this theory cannot be supported. Only in very few cases grain boundaries contribute an enhanced current with respect to the surrounding grain surfaces. In addition, we interpret abrupt lateral changes in PITC as non-passivated grain boundaries, forming transport barriers for minority charge carriers. Conversely, passivated grain boundaries promote the assimilation of electronic properties of neighbouring grains. Metastable effects are observed by tracking PITC values over a longer period of time. The decay of the photocurrent is explained by the trapping of minority charge carriers in deep defect states. Comparing PITC data with the macroscopical short-circuit current of a solar cells, a correlation between the results cannot be proofed. Detailed investigations reveal that essential preparation steps for STM performance strongly affect the results. Taking this into account, in-situ measurements are seem to be mandatory. Therefore some suggestions concerning the realisation of PITC in-situ quality control of solar cell fabrication will be outlined.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Ulrich Herber
URN:urn:nbn:de:bvb:20-opus-21291
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Physik und Astronomie
Faculties:Fakultät für Physik und Astronomie / Physikalisches Institut
Date of final exam:2006/12/21
Language:German
Year of Completion:2006
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
GND Keyword:Rastertunnelmikroskopie; Dünnschichtsolarzelle
Tag:CIGS; Inhomogenität; Modulation; Photostrom; Rastertunnelspektroskopie
CIGS; Inhomogeneities; Modulation; Photocurrent; Scanning Tunneling Spectroscopy
PACS-Classification:60.00.00 CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES / 68.00.00 Surfaces and interfaces; thin films and nanosystems (structure and nonelectronic properties) (for surface and interface chemistry, see 82.65.+r, for surface magnetism, see 75.70.Rf) / 68.37.-d Microscopy of surfaces, interfaces, and thin films / 68.37.Ef Scanning tunneling microscopy (including chemistry induced with STM)
Release Date:2007/02/06
Advisor:Prof. Dr. Eberhard Umbach