Molekulare Charakterisierung der Response-Regulatoren ArsR (HP0166), HP1043 und HP1021 von Helicobacter pylori

Molecular characterisation of the response regulators ArsR, HP1043, HP1021 of Helicobacter pylori

Please always quote using this URN: urn:nbn:de:bvb:20-opus-21855
  • Bakterien müssen ständig in der Lage sein auf Veränderungen in ihrer Umwelt reagieren zu können. Zur Wahrnehmung dieser Veränderungen haben sich unterschiedliche Signaltransduktionssysteme entwickelt. Ein weit verbreiteter und gut charakterisierter Mechanismus zur Signaltransduktion sind die so genannten Zwei-Komponentensysteme. Im Genom von H. pylori konnten nur wenige Bestandteile von Zwei-Komponentensystemen identifiziert werden. Dazu zählen neben dem Chemotaxis-System lediglich drei Histidin-Kinasen, ArsS, CrdS und FlgS, und fünfBakterien müssen ständig in der Lage sein auf Veränderungen in ihrer Umwelt reagieren zu können. Zur Wahrnehmung dieser Veränderungen haben sich unterschiedliche Signaltransduktionssysteme entwickelt. Ein weit verbreiteter und gut charakterisierter Mechanismus zur Signaltransduktion sind die so genannten Zwei-Komponentensysteme. Im Genom von H. pylori konnten nur wenige Bestandteile von Zwei-Komponentensystemen identifiziert werden. Dazu zählen neben dem Chemotaxis-System lediglich drei Histidin-Kinasen, ArsS, CrdS und FlgS, und fünf Response-Regulatoren HP1021, HP1043, ArsR, CrdR und FlgR, die vermutlich Transkriptions-regulatorische Funktionen haben. Zwei der Response-Regulatoren, HP1043 und ArsR als essentiell für das Überleben von H. pylori, während HP1021 einen deutlichen Einfluss auf das Zellwachstum hat, da ein Wachstums-Defekt zu erkennen ist, wenn das entsprechende Gen hp1021 deletiert wird. Eine Deletion von arsS, dem Gen der zugehörigen Histidin-Kinase von ArsR, hat unter Standard-Wachstumsbedingungen keine Auswirkung auf das Zellwachstum von H. pylori. Diese Beobachtung spricht für die Hypothese, dass der Response-Regulator ArsR die Transkription zweier unterschiedlicher Sets von Zielgenen kontrolliert. Demzufolge reguliert der Response-Regulator ArsR nach Säure-induzierter Phosphorylierung durch ArsS die Transkription von Genen, die zur Säureresistenz beitragen, während ArsR im nicht-phosphorylierten Zustand die Transkription von weiteren Zielgenen kontrolliert, von denen mindestens eines für das Zellwachstum essentiell sein sollte. Das durch ArsR~P kontrollierte Regulon konnte bereits weitgehend charakterisiert werden allerdings sind die Zielgene des unphosphorylierten Regulators bislang unbekannt. In der vorliegenden Arbeit konnte die zuvor beschriebene Hypothese bestätigt werden, da gezeigt wurde, dass ein Derivat von ArsR, mit einer Mutation der Phosphorylierungsstelle D52 zu N52, das wildtypische Protein bezüglich des Zellwachstums unter Standardbedingungen funktionell ersetzen kann. Für die Response-Regulatoren HP1021 und HP1043 konnte bislang keine zugehörige Histidin-Kinase identifiziert werden und interessanterweise findet man in der Receiver-Domäne dieser Response-Regulatoren atypische Abweichungen von der Konsensus-Sequenz. Um die Bedeutung dieser atypischen Primärsequenzen für die Funktion dieser Response-Regulatoren zu untersuchen wurden mutierte H. pylori-Stämme konstruiert, die ausschließlich Derivate von HP1021 bzw. HP1043 exprimieren, die in ihrer Receiver-Sequenz der Konsensus-Sequenz entsprachen. Da diese Mutanten sich bezüglich ihres Zellwachstums nicht vom Wildtyp unterscheiden, konnte nachgewiesen werden, dass die atypischen Receiver-Sequenzen der beiden Response-Regulatoren nicht entscheidend für die Funktionen der Response-Regulatoren sind. Weiterhin konnten Indizien dafür gesammelt werden, dass HP1021 und HP1043 hinsichtlich ihrer Aktivierung vermutlich vom üblichen Zwei-Komponentenparadigma abweichen. Derivate von HP1021 und HP1043 mit Mutationen ihrer putativen atypischen Phosphorylierungsstelle sind in der Lage ihre wildtypischen Pendants hinsichtlich der bekannten Phänotypen funktionell zu ersetzen. Somit ist eine Phosphorylierung der Receiver-Domäne dieser Response-Regulatoren keine Voraussetzung für ein normales Zellwachstum von H. pylori. Diese Hypothese wird gestützt durch die Beobachtung, dass ein Ortholog von HP1043 aus C. jejuni CJ0355, das natürlicherweise an der potentiellen Phosphorylierungsstelle einen nicht phosphorylierbaren Aminosäurerest trägt, HP1043 in seiner Funktion ersetzen kann. Es konnte gezeigt werden, dass in vitro keine Phosphorylierung durch radioaktiv markiertes Acetylphosphat stattfindet und dass ein H. pylori-Stamm mit einer Deletion der Gene pta und ackA, welche Proteine kodieren, die bei der Synthese von zellulärem Acetylphosphat benötigt werden, einen normalen Wachstums-Phänotyp zeigt. Zusätzlich konnten in einer massenspektrometrischen Analyse des Proteins HP1021, welches nach Zweidimensionaler Gelelektrophorese von Gesamtzellproteinlysaten aus H. pylori isoliert wurde, keine Hinweise auf eine Serinphosphorylierung entdeckt werden. Es ist daher fraglich ob in vivo eine funktionell relevante Phosphorylierung stattfindet. Die Mechanismen zur Modulation der Regulator-Aktivität von HP1043 und HP1021 bleiben unklar. In der vorliegenden Arbeit konnte demonstriert werden, dass eine strikte Transkriptionskontrolle nicht für die Zellwachstums-assoziierten Funktionen von HP1021 von Bedeutung ist. Dagegen wurden Hinweise darauf erzielt, dass die Expression von HP1043 auf einem posttranskriptionellen und/oder auf einem posttranslationellen Level reguliert wird. Es waren bislang keine Zielgene von HP1021 bekannt. Durch vergleichende Zweidimensionale Gelelektrophorese der H. pylori Stämme 26695 und 26695 1021Δ konnten einige potentielle Zielgene des Response-Regulators HP1021 identifiziert werden.show moreshow less
  • Bacteria need to react instantaneously on changes in their environment. For the sensing of environmental changes many different signaltransduction-systems have been evolved and the most widespread and well-characterised mechanism for signal transduction among the bacteria are the so called two-component systems. The genome of Helicobacter pylori encodes only a few proteins which are part of a two-component system. In addition to the chemotaxis-system there are just three histidine kinases, ArsS (HP0165), CrdS (HP1364) and HP0244, and fiveBacteria need to react instantaneously on changes in their environment. For the sensing of environmental changes many different signaltransduction-systems have been evolved and the most widespread and well-characterised mechanism for signal transduction among the bacteria are the so called two-component systems. The genome of Helicobacter pylori encodes only a few proteins which are part of a two-component system. In addition to the chemotaxis-system there are just three histidine kinases, ArsS (HP0165), CrdS (HP1364) and HP0244, and five response regulators HP1021, HP1043, ArsR (HP0166), CrdR (HP1365) and HP0703, which are probably involved in transcriptional regulation (Alm et al., 1999; Tomb et al., 1997). Interestingly two of the response regulators, HP1043 and ArsR (HP0166) proved to be essential for the survival of H. pylori, while the response regulator HP1021 has a distinct influence on the cell-growth, as indicated by a severe growth defect when hp1021 is deleted (Beier & Frank, 2000; McDaniel et al., 2001; Schär, 2001). Under standard growth-conditions, the deletion of arsS (hp0165), encoding the cognate histidine kinase of ArsR (HP0166), has no effect on the cell-growth of H. pylori. This observation argues for the hypothesis that the response regulator ArsR (HP0166) controls the transcription of two different sets of target-genes. Upon acid-induced phosphorylation via ArsS (HP0165), the response regulator ArsR (HP0166) regulates the transcription of genes which are involved in acid resistance mechanisms, while in an unphosphorylated state ArsR (HP0166) controls other target genes, of which at least one is essential for cell-growth. The regulon controlled by ArsR~P (HP0166~P) has been extensively studied (Dietz, 2002; Forsyth et al., 2002; Pflock et al., 2004; Pflock et al., 2006; Pflock et al., 2005), while target genes of the unphosphorylated response regulator are so far unknown. In this work this hypothesis could be proven. It was shown that a derivative of ArsR (HP0166), with a mutation of the phosphorylation site D52 to N52, is able to substitute the wildtype protein functionally with respect to cell-growth. In the case of the response regulators HP1021 and HP1043 no cognate histidine kinases have been identified so far (Beier & Frank, 2000). Interestingly the receiver domains of the response regulators differ from the consensus sequence at highly conserved aminoacid residues. To investigate the importance of the atypical primary sequences for the function of HP1021 and HP1043, mutated H. pylori strains expressing exclusively derivatives of HP1021 or HP1043 with receiver sequences matching the consensus sequence were constructed. As these mutants did not show differences in cell-growth in comparison to the wildtype strain, it was proven that the atypical receiver sequences are not crucial for cell growth. Furthermore, indications could be found that HP1021 and HP1043 presumably differ from the common two component paradigm regarding their activation. Derivatives of HP1021 and HP1043 with mutations in their putative phosphorylation sites could functionally complement their wildtype counterparts with regards to cell growth. Therefore the phosphorylation of the receiver domain of these response regulators is not a pre-requisite for normal cell growth of H. pylori. In line with this hypothesis it could be demonstrated that there is no in vitro phosphorylation of the receiver domain of HP1021 and HP1043 with radioactive labelled acetylphosphate and that a H. pylori strain which a deletion of the genes pta and ackA, encoding proteins involved in the synthesis of acetylphosphate in the cell, showed a normal growth-phenotype. Moreover, when the protein HP1021, which was isolated by two-dimensional gelelectrophoreses, was analysed by mass spectrometry no evidence of a serine phosphorylation was obtained. Aditionally the observation that deletion of hp1043 can be complemented by the C. jejuni ortholog cj0355 encoding a response regulator protein with an asparagine residue replacing the consensus phosphate-accepting aspatic acid residue supports this hypothesis. Therefore it is questionable whether in vivo there is a phosphorylation which is functional relevant at all at the receiver domain. The mechanisms by which the activity of the Response-Regulators HP1021 and HP1043 is modulated still remain unclear. Here it could be demonstrated that strict transcriptional control of its expression is not relevant for the cell-growth associated function of HP1021. In contrast there are hints that the expression of HP1043 is controlled on a post-transcriptional and/or a post-translational level. Up to now no target genes of HP1021 were known. Using comperative two-dimensional gelelectrophoresis some potential target genes have been identified, among others HP0695, FadA and the Catalase.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Jennifer Schär
URN:urn:nbn:de:bvb:20-opus-21855
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Biologie
Faculties:Fakultät für Biologie / Theodor-Boveri-Institut für Biowissenschaften
Date of final exam:2007/02/21
Language:German
Year of Completion:2006
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
GND Keyword:Helicobacter pylori; Signaltransduktion; Genregulation
Tag:Helicobacter pylori; Response-Regulator; Zwei-Komponentensystem; essentiell; orphan
Helicobacter pylori; essential; orphan; response regulator; two component system
Release Date:2007/02/28
Advisor:PD Dr. Dagmar Beier