DNA-Bindungseigenschaften von Mitgliedern der p53 Familie

DNA binding properties of members of the p53 family

Please always quote using this URN: urn:nbn:de:bvb:20-opus-35083
  • Ein sehr wichtiger Tumorsuppressor ist der Transkriptionsfaktor p53, der Zellschicksals-Entscheidungen wie Zellzyklus-Arrest und programmierten Zelltod (Apoptose) kontrolliert. Die Wirkung von p53 und von seinen Familienmitgliedern p63 und p73 beruht überwiegend auf der Fähigkeit, als Transkriptionsfaktoren die Genexpression zu regulieren. Die DNA-Bindung an Promotoren von Zielgenen ist dabei von grundlegender Bedeutung und wird durch die hoch konservierte zentrale DNA-Bindungs-Domäne und den Carboxy-Terminus bestimmt. In dieser Arbeit wurdenEin sehr wichtiger Tumorsuppressor ist der Transkriptionsfaktor p53, der Zellschicksals-Entscheidungen wie Zellzyklus-Arrest und programmierten Zelltod (Apoptose) kontrolliert. Die Wirkung von p53 und von seinen Familienmitgliedern p63 und p73 beruht überwiegend auf der Fähigkeit, als Transkriptionsfaktoren die Genexpression zu regulieren. Die DNA-Bindung an Promotoren von Zielgenen ist dabei von grundlegender Bedeutung und wird durch die hoch konservierte zentrale DNA-Bindungs-Domäne und den Carboxy-Terminus bestimmt. In dieser Arbeit wurden die DNA-Bindungseigenschaften von p53 und verschiedener Carboxy-terminalen p73 Isoformen untersucht. In „electrophoretic mobility shift assay” (EMSA) Experimenten bildeten p53 und p73gamma nur schwache Sequenz-spezifische DNA-Komplexe, wohingegen p73alpha, beta und delta die DNA deutlich stärker banden. Die schwache DNA-Bindung von p53 und p73gamma kann durch mehrfach positiv geladene Carboxy-Termini erklärt werden, die über eine Sequenz-unabhängige DNA-Bindung ein Gleiten entlang der DNA ermöglichen. Die Deletion der Carboxy-terminalen Domäne (CTD) von p53 („p53delta30“) verstärkte dementsprechend die Sequenz-spezifische DNA-Bindung in vitro und seine Übertragung auf p73alpha („p73alpha+30“) schwächte sie ab. Mittels „fluorescence recovery after photobleaching“ (FRAP) Experimenten konnte in lebenden Zellen eine Verminderung der intra-nukleären Mobilität von p53 und p73alpha+30 durch die CTD gezeigt werden, die aus der Sequenz-unabhängigen DNA-Bindung resultiert. Zusätzlich reduzierte die CTD die Sequenz-spezifische DNA-Bindung von p53 an den p21 (CDKN1A) Promotor. Das Spektrum der regulierten Zielgene wurde in einer Genom-weiten Genexpressions-Analyse nicht durch die CTD verändert, sondern maßgeblich durch das Protein-Rückgrat von p53 beziehungsweise p73 bestimmt. Allerdings verminderte die CTD das Ausmaß der Transkriptions-Regulation und hemmte die Induktion von Zellzyklus-Arrest und Apoptose. Die mehrfach positiv geladene CTD in p53 besitzt demzufolge eine negativ regulatorische Wirkung, die in den wichtigsten p73 Isoformen alpha, beta und delta fehlt. Die zentrale DNA-Bindungs-Domäne trägt durch elektrostatische Wechselwirkungen zwischen H1-Helices (Aminosäurereste 177 bis 182) unterschiedlicher p53 Monomere zu kooperativer DNA-Bindung und zu Zellschicksals-Entscheidungen bei. Anhand von Mutanten, die unterschiedlich starke H1-Helix-Interaktionen ermöglichen, konnte gezeigt werden, dass starke Interaktionen die Bindung an Promotoren von pro-apoptotischen Genen verstärkte, wohingegen die Bindung an anti-apoptotische und Zellzyklus-blockierende Gene unabhängig von der Interaktions-Stärke war. Diese Unterschiede in der Promotor-Bindung ließen sich nicht auf eine veränderte zelluläre Lokalisation der Mutanten zurückführen, da alle Mutanten überwiegend nukleär lokalisiert waren. Eine an Serin 183 Phosphorylierungs-defekte Mutante von p53 bildete stabile DNA-Komplexe, entsprechend einer Mutante mit starker H1-Helix-Interaktion, und trans-aktivierte pro-apoptotische Promotoren stärker als Mutanten, die Phosphorylierung von p53 an Serin 183 simulieren. Da zusätzlich bekannt ist, dass Serin 183 mit der H1-Helix wechselwirkt, könnte diese Phosphorylierung einen physiologischen Mechanismus zur Regulation der H1-Helix-Interaktion und damit des Zellschicksals darstellen. Zusammenfassend ließ sich zeigen, dass sowohl die Interaktions-Stärke zweier DNA-Bindungs-Domänen als auch die elektrische Ladung des Carboxy-Terminus die DNA-Bindungseigenschaften von p53 Familienmitgliedern bestimmen und so Zellschicksals-Entscheidungen der p53 Familie beeinflussen.show moreshow less
  • A very important tumour suppressor is the transcription factor p53 that controls cell fate decisions like cell cycle arrest and programmed cell death (apoptosis). The effects of p53 and its family members p63 and p73 are mainly based on their transcription factor activities to regulate gene expression. The DNA binding to promoters of target genes is of fundamental importance for their functionality and is determined by the highly conserved core DNA binding domain and the carboxy-terminus. In this thesis the DNA binding properties of p53 andA very important tumour suppressor is the transcription factor p53 that controls cell fate decisions like cell cycle arrest and programmed cell death (apoptosis). The effects of p53 and its family members p63 and p73 are mainly based on their transcription factor activities to regulate gene expression. The DNA binding to promoters of target genes is of fundamental importance for their functionality and is determined by the highly conserved core DNA binding domain and the carboxy-terminus. In this thesis the DNA binding properties of p53 and different carboxy-terminal p73 isoforms were examined. In electrophoretic mobility shift assays (EMSA) p53 and p73gamma formed only weak sequence-specific protein-DNA-complexes while p73alpha, beta and delta bound considerably stronger to DNA. A highly positively charged carboxy-terminus can explain the weak DNA binding of p53 and p73gamma by enabling sequence-nonspecific DNA binding leading to sliding on DNA. According to this the deletion of the carboxy-terminal domain (CTD) of p53 („p53delta30“) reinforced DNA binding in vitro, and its fusion to p73alpha („p73alpha+30“) attenuated it. In living cells the CTD reduced intranuclear mobility of p53 and p73alpha+30 in fluorescence recovery after photobleaching (FRAP) experiments by mediating sequence-nonspecific binding to DNA. In addition, the CTD reduced sequence-specific occupancy of the p21 (CDKN1A) promoter by p53 in vivo. In an unbiased genome-wide gene expression analysis the spectrum of target genes was not changed by the presence of the CTD, but mainly determined by the p53 and p73 protein backbone, respectively. However, the CTD diminished the level of target gene activation and inhibited the induction of cell cycle arrest and apoptosis. As a result, the highly positively charged carboxy-terminus of p53 exhibits a negative regulatory effect that is missing in the most important p73 isoforms alpha, beta and delta. The core DNA binding domain adds to cooperative DNA binding and cell fate decisions by electrostatic interactions between H1 helices (residues 177 to 182) of different p53 monomers. Strong H1 helix interactions increased binding to promoters of pro-apoptotic genes, whereas binding to anti-apoptotic and proliferation inhibiting genes was independent of the interaction strength as shown by mutants with different strengths of the H1 helix interactions. These differences in promoter binding were not caused by different cellular localizations of the mutants as they were all predominantly localized to the nucleus. A serine 183 phosphorylation-defective mutant of p53 formed stable protein-DNA-complexes, comparable to a mutant with strong H1 helix interactions, and trans-activated pro-apoptotic promoters stronger than mutants that mimicked p53 phosphorylated on serine 183. Due to the fact that serine 183 interacts with the H1 helix, these data suggest that phosphorylation of serine 183 is a physiological mechanism to regulate H1 helix interactions and thereby cell fate decisions. In summary, it was shown that both the interaction strength of two DNA binding domains and the electrostatic charge of the CTD define the DNA binding properties of p53 family members and thereby influence cell fate decisions of the p53 family.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Markus Sauer
URN:urn:nbn:de:bvb:20-opus-35083
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Biologie
Faculties:Fakultät für Biologie / Rudolf-Virchow-Zentrum
Date of final exam:2009/03/25
Language:German
Year of Completion:2009
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
GND Keyword:Protein p53; DNS-Bindung; Protein p73; Transkriptionsfaktor; Apoptosis
Tag:Carboxy-Terminus; FRAP; Gleiten; H1-Helix
FRAP; H1 helix; carboxy terminus; sliding
Release Date:2010/06/07
Advisor:Prof. Dr. Thorsten Stiewe