Methods for hybrid modeling of solution scattering data and their application

Methoden zur Hybriden Modellierung von SAXS Daten (Röntgenkleinwinkelstreuung) und deren Anwendung

Please always quote using this URN: urn:nbn:de:bvb:20-opus-65044
  • Small-angle X-ray scattering (SAXS) is a universal low-resolution method to study proteins in solution and to analyze structural changes in response to variations of conditions (pH, temperature, ionic strength etc). SAXS is hardly limited by the particle size, being applicable to the smallest proteins and to huge macromolecular machines like ribosomes and viruses. SAXS experiments are usually fast and require a moderate amount of purified material. Traditionally, SAXS is employed to study the size and shape of globular proteins, but recentSmall-angle X-ray scattering (SAXS) is a universal low-resolution method to study proteins in solution and to analyze structural changes in response to variations of conditions (pH, temperature, ionic strength etc). SAXS is hardly limited by the particle size, being applicable to the smallest proteins and to huge macromolecular machines like ribosomes and viruses. SAXS experiments are usually fast and require a moderate amount of purified material. Traditionally, SAXS is employed to study the size and shape of globular proteins, but recent developments have made it possible to quantitatively characterize the structure and structural transitions of metastable systems, e.g. partially or completely unfolded proteins. In the absence of complementary information, low-resolution macromolecular shapes can be reconstructed ab initio and overall characteristics of the systems can be extracted. If a high or low-resolution structure or a predicted model is available, it can be validated against the experimental SAXS data. If the measured sample is polydisperse, the oligomeric state and/or oligomeric composition in solution can be determined. One of the most important approaches for macromolecular complexes is a combined ab initio/rigid body modeling, when the structures (either complete or partial) of individual subunits are available and SAXS data is employed to build the entire complex. Moreover, this method can be effectively combined with information from other structural, computational and biochemical methods. All the above approaches are covered in a comprehensive program suite ATSAS for SAXS data analysis, which has been developed at the EMBL-Hamburg. In order to meet the growing demands of the structural biology community, methods for SAXS data analysis must be further developed. This thesis describes the development of two new modules, RANLOGS and EM2DAM, which became part of ATSAS suite. The former program can be employed for constructing libraries of linkers and loops de novo and became a part of a combined ab initio/rigid body modeling program CORAL. EM2DAM can be employed to convert electron microscopy maps to bead models, which can be used for modeling or structure validation. Moreover, the programs CRYSOL and CRYSON, for computing X-ray and neutron scattering patterns from atomic models, respectively, were refurbished to work faster and new options were added to them. Two programs, to be contributed to future releases of the ATSAS package, were also developed. The first program generates a large pool of possible models using rigid body modeling program SASREF, selects and refines models with lowest discrepancy to experimental SAXS data using a docking program HADDOCK. The second program refines binary protein-protein complexes using the SAXS data and the high-resolution models of unbound subunits. Some results and conclusions from this work are presented here. The developed approaches detailed in this thesis, together with existing ATSAS modules were additionally employed in a number of collaborative projects. New insights into the “structural memory” of natively unfolded tau protein were gained and supramodular structure of RhoA-specific guanidine nucleotide exchange factor was reconstructed. Moreover, high resolution structures of several hematopoietic cytokine-receptor complexes were validated and re-modeled using the SAXS data. Important information about the oligomeric state of yeast frataxin in solution was derived from the scattering patterns recorded under different conditions and its flexibility was quantitatively characterized using the Ensemble Optimization Method (EOM).show moreshow less
  • Röntgenkleinwinkelstreuung (small angle X-ray scattering, SAXS) ist eine fundamentale niedrigauflösende Methode zur Untersuchung von Proteinen in Lösung und Analyse von Strukturänderungen unter verschiedenen Bedingungen (pH, Temperatur, Ionenstärke, usw.). SAXS ist nicht durch die Teilchengröße begrenzt und die Anwendbarkeit reicht von kleinsten Proteinen bis hin zu großen makromolekularen Maschinen, wie Ribosomen und Viren. SAXS-Experimente sind normalerweise schnell durchzuführen und erfordern eine relativ geringe Menge gereinigten Materials.Röntgenkleinwinkelstreuung (small angle X-ray scattering, SAXS) ist eine fundamentale niedrigauflösende Methode zur Untersuchung von Proteinen in Lösung und Analyse von Strukturänderungen unter verschiedenen Bedingungen (pH, Temperatur, Ionenstärke, usw.). SAXS ist nicht durch die Teilchengröße begrenzt und die Anwendbarkeit reicht von kleinsten Proteinen bis hin zu großen makromolekularen Maschinen, wie Ribosomen und Viren. SAXS-Experimente sind normalerweise schnell durchzuführen und erfordern eine relativ geringe Menge gereinigten Materials. SAXS wird hauptsächlich eingesetzt, um Größe und Form der globulärer Proteine zu studieren. Die neuesten Entwicklungen ermöglichen jedoch auch die Untersuchung und quantitative Charakterisierung metastabiler Systeme, wie teilweise oder vollständig ungefaltete Proteine. Für die SAXS-Datenanalyse existiert das umfassende Programmpaket ATSAS, welches am EMBL-Hamburg entwickelt wurde. Es ermöglicht die de novo Modellierung der Proteinform mit niedriger Auflösung, wenn keine ergänzende Information über die dreidimensionale Struktur vorhanden ist. Des weiteren können diverse Gesamteigenschaften des untersuchten Systems berechnet werden. Wenn ein hoch oder niedrig aufgelöstes strukturell bestimmtes oder vorgesagtes Modell vorhanden ist, kann es gegen experimentellen SAXS Daten validiert werden. Wenn die Probe polydispers ist, kann der oligomere Zustand und/oder der oligomere Zusammensetzung in Lösung bestimmt werden. Einer der wichtigsten Ansätze für SAXS Untersuchungen an makromolekularen Komplexen ist die kombinierte ab initio/Starrkörper-Modellierung, wenn entweder komplette oder partielle Strukturen der einzelnen Untereinheiten zusammen mit SAXS Daten benutzt werden, um daraus den gesamten Komplex zu konstruieren. Außerdem kann diese Methode mit Informationen von anderen strukturellen, rechnerischen und biochemischen Methoden effektiv kombiniert werden. Um den Anwendungsbereich von SAXS in der Strukturbiologie zu erweitern, müssen Methoden für die SAXS-Datenanalyse weiter entwickelt werden. Im Rahmen dieser Arbeit wurden zwei neue Module, RANLOGS und EM2DAM, entwickelt und zur ATSAS Programmsuite hinzugefügt. Ersteres kann eingesetzt werden, um eine Bibliothek verknüpfender Polypeptidketten (linkers) und -schleifen (loops) de novo aufzubauen und ist bereits ein Teil des Programms CORAL zur kombinierten ab initio/Starrkörper-Modellierung. EM2DAM kann eingesetzt werden, um Elektronenmikroskopie-Dichtekarten in Kugelmodelle umzuwandeln, welche für die Modellierung oder Struktur-Validierung benutzt werden können. Außerdem wurden die Programme CRYSOL und CRYSON zur Berechnung von Röntgenstrahl- beziehungsweise Neutronenstreumuster aus Atommodellen erweitert, um die Berechnung zu beschleunigen und neue Optionen einzubauen. Zwei weitere Programme, die noch nicht Teil des ATSAS Pakets sind, wurden entwickelt. Das erste ist ein Programm, das mögliche Proteinmodelle von Komplexen unter Verwendung des SAXS Starrkörper-Modellierung-Programms SASREF erstellt. Dann werden Modelle zu experimentellen SAXS-Daten angepasst, ausgewählt und verfeinert unter Verwendung des Protein-Protein-Docking-Programms HADDOCK. Das zweite Programm verfeinert binäre Protein-Protein-Komplexe unter Verwendung von SAXS-Daten sowie hochaufgelöster Modelle der ungebundenen Untereinheiten. Im Folgenden werden die einige Ergebnisse dargestellt und diskutiert. Die entwickelten Methoden wurden zusammen mit den vorhandenen ATSAS-Modulen im Rahmen von Kollaborationsprojekte eingesetzt. So war es möglich, neue Einblicke in das „strukturelle Gedächtnis“ des natürlicherweise ungefalteten Protein tau zu bekommen und die supramodulare Struktur eines RhoA-spezifischen Guanidinnukleotid-Austauschfaktors zu rekonstruieren. Außerdem wurden hoch aufgelöste Strukturen einiger blutbildender Cytokin-Empfänger-Komplexe unter Verwendung von SAXS Daten validiert und verfeinert. Wichtige Informationen über den oligomeren Zustand von Hefe-Frataxin in Lösung wurden aus den unter verschiedenen experimentelle Bedingungen gemessenen Streumustern abgeleitet, und seine Flexibilität wurde quantitativ unter Verwendung der Ensemble-Optimierungs-Methode (EOM) ermittelt.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Alexander V. Shkumatov
URN:urn:nbn:de:bvb:20-opus-65044
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Biologie
Faculties:Universität - Fakultätsübergreifend / Universität Würzburg
Date of final exam:2011/07/26
Language:English
Year of Completion:2011
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
GND Keyword:Röntgen-Kleinwinkelstreuung; Tau-Protein; Datenanalyse
Tag:Alzheimer-Krankheit; Proteinstruktur; teilweise oder vollständig ungefaltete Proteine
Alzheimer disease; IDPs; SAXS; protein structure; tau protein
Release Date:2011/08/22
Advisor:Dr. Dmitri Svergun
Licence (German):License LogoDeutsches Urheberrecht