Strahlungstransport in dispersen nicht-transparenten Medien

Radiative transfer in disperse non-transparent media

Please always quote using this URN: urn:nbn:de:bvb:20-opus-66669
  • In dieser Habilitationsschrift wird das Gesamtgebiet des Wärmetransports in dispersen Medien untersucht, kompakt, ohne Anspruch auf Vollständigkeit, jedoch mit Schwerpunkt auf Strahlungstransport in nicht-transparenten Medien; hier sind es bevorzugt hochporöse Substanzen, die aus Festkörperteilchen bestehen. Die Ergebnisse lassen sich auf andere disperse nicht-transparente Medien wie dichte Gasatmosphären oder einige Zweiphasengemische übertragen, wenn Nicht-Strahlungsanteile und Gesamt-Energieerhaltung korrekt formuliert werden. DieIn dieser Habilitationsschrift wird das Gesamtgebiet des Wärmetransports in dispersen Medien untersucht, kompakt, ohne Anspruch auf Vollständigkeit, jedoch mit Schwerpunkt auf Strahlungstransport in nicht-transparenten Medien; hier sind es bevorzugt hochporöse Substanzen, die aus Festkörperteilchen bestehen. Die Ergebnisse lassen sich auf andere disperse nicht-transparente Medien wie dichte Gasatmosphären oder einige Zweiphasengemische übertragen, wenn Nicht-Strahlungsanteile und Gesamt-Energieerhaltung korrekt formuliert werden. Die vorliegenden Untersuchungen konzentrieren sich auf stationäre Randbedingungen und Strahlungsquellen. Die Motivation zu dieser Arbeit ist mindestens zweifach: Die Trennung des totalen Wärmestroms in seine Komponenten, in irgendeinem kontinuierlichen oder dispersen Medium, ist eines der herausfordernden, gleichzeitig schwierigsten physikalischen Probleme bei der Analyse des Wärmetransports; zum zweiten ist es für die Verringerung von Wärmeverlusten (z. B. in thermischen Isolierungen) dringend erforderlich, die einzelnen Komponenten der Wärmeverlustströme zu kennen, um sie einzeln zu minimieren (das geht offensichtlich nur, wenn man den totalen Wärmstrom in seine Komponenten zerlegen kann). Die Trennung kann erfolgreich sein, wenn die optische Dicke des untersuchten Mediums sehr groß ist (das Medium ist dann nicht-transparent). In dieser idealen, in der Energietechnik jedoch häufig auftretenden Situation (und nicht nur dort), liefert das Strahlungsdiffusionsmodell den korrekten Ansatz zur Beschreibung des Strahlungsanteils und dessen Temperaturabhängigkeit. Wegen Energieerhaltung und mit der additiven Näherung erlaubt dieses Ergebnis umgekehrt die Berechnung auch der Nichtstrahlungsanteile im totalen Wärmestrom; diese sind demnach alle gleichzeitig in kalorimetrischen Messungen zugänglich. Damit wird nachfolgende separate Analyse dieser Komponenten mittels geeigneter theoretischer Modelle möglich. Da das Temperaturprofil im Medium alle Wärmestromkomponenten zum totalen Wärmestrom miteinander koppelt, ist für diesen Ansatz die Kenntnis der Temperaturabhängigkeit auch aller Nicht-Strahlungsanteile erforderlich. Neben der kalorimetrischen Methode kann die Bestimmung der Extinktion des dispersen Mediums und hiermit des Strahlungstransports auch mittels Spektroskopie sowie Berechnung nach der strengen Mie-Theorie der Lichtstreuung und mit dem Rosseland-Mittelwert vorgenommen werden. Dadurch wird ein Vergleich möglich zwischen Ergebnissen, die mittels drei voneinander völlig unabhängiger Methoden, nämlich kalorimetrisch, spektroskopisch und analytisch/numerisch erzielt wurden. Die Ergebnisse stimmen überein, wenn das Medium nicht-transparent ist; dieser Nachweis wird in der vorliegenden Habilitationsschrift geführt. Im ersten Teil der Habilitationsschrift wird in breit angelegtem Review die Fachliteratur zum Strahlungstransport bis zum Jahr 1985 diskutiert und Methoden zur Lösung der Strahlungstransportgleichung auch im Fall stark anisotroper Streuung beschrieben. Wegen der Forderung nach Energieerhaltung und mit dem oben genannten Ziel, auch die Nicht-Strahlungskomponenten zu analysieren, muß diese Diskussion die theoretischen Aspekte auch dieser Anteile (hier Gas- und Festkörperkontakt-Wärmetransport) einschließen. Den Schluß des ersten Teils bildet ein Katalog offener Fragen, die im zweiten Teil der Habilitationsschrift angegangen werden. Dort werden mittels experimenteller und analytisch/numerischer Ergebnisse das Strahlungsdiffusionsmodell und seine Anwendbarkeit auf disperse nicht-transparente Medien bestätigt. Die Analysen sind gerichtet auf reine oder mit Infrarot-Trübungsmitteln dotierte Pulver und Faserpapiere; beide sind leicht zugängliche, wohl-definierte Testsubstanzen disperser Medien. Ein wichtiger Teil dieser Untersuchungen enthält Messungen ihrer Wärmeleitfähigkeit unter Vakuum und unter externer mechanischer Druckbelastung. Mit evakuierten, druckbelasteten Faserpapieren wurden Wärmeleitfähigkeiten erzielt, die zu den niedrigsten gehören, die bis 1985 an solchen Medien bei hohen Temperaturen gemessen wurden. Weiter sollen optimale Teilchendurchmesser gefunden werden, mit denen das Extinktionsvermögen solcher Schüttungen signifikant erhöht werden kann. Insbesondere ist eine exotische Vorhersage der Mie-Theorie zu prüfen, nach welcher die Extinktion perfekt elektrisch leitender, langer, extrem dünner Zylinder (unter 50 nm) um Größenordnungen über derjenigen herkömmlicher (nichtleitender) Pulver oder Fasern liegt; hierfür sind Materialproben herzustellen. In der Habilitationsschrift wird aufgezeigt, welcher Weg für diesen Nachweis beschritten werden muß (wenige Jahre nach Vorlage der Habilitationsschrift wurden Gustav Mies und Milton Kerkers Vorhersagen auf diesem Weg mit feinsten metallisierten Glasfasern und mit Nickelfasern in Veröffentlichungen des Autors gemeinsam mit J. Fricke, M. Arduini-Schuster, H.-P. Ebert, R. Caps, D. Büttner und A. Kreh erstmalig bestätigt).show moreshow less
  • The present thesis for habilitation investigates, in compact form, without claiming completeness, the field of heat, in particular radiative, transfer in disperse media if they are non-transparent. Preference is given to high porosity substances being composed of solid particles. The obtained results can be applied to other disperse media like dense gas atmospheres or some two-phase fluids provided non-radiative components of total heat flow, and corresponding total energy balances, are appropriately modelled. The present investigations areThe present thesis for habilitation investigates, in compact form, without claiming completeness, the field of heat, in particular radiative, transfer in disperse media if they are non-transparent. Preference is given to high porosity substances being composed of solid particles. The obtained results can be applied to other disperse media like dense gas atmospheres or some two-phase fluids provided non-radiative components of total heat flow, and corresponding total energy balances, are appropriately modelled. The present investigations are concentrated on stationary boundary conditions and radiation sources. Motivation for this work is at least two-fold: First, splitting of total heat flow into its components is one of the most challenging and difficult problems of experimental physics in any, continuous or disperse, medium, and, secondly, reduction of total heat losses (e. g. in thermal insulations) inevitably requests minimisation steps simultaneously to be taken with all its separated components (this of course works only if separation really is successful). Separation can be successful if the optical thickness of the medium is large (the medium then is non-transparent). In this ideal situation that, nonetheless, frequently arises, not only in energy technology, the radiative diffusion model delivers correct expressions for the radiative heat flow component and its temperature dependency. By conservation of energy, this result together with the additive approximation in turn allows determination, from calorimetric measurements, of also the non-radiative contributions to total heat transfer. The approach thus provides a key to subsequently analyse all heat transfer components by appropriate theoretical models. Since the temperature profile in the medium couples all heat transfer components to total heat flow, knowledge of the temperature dependence of also the non-radiative components is indispensable for this purpose. Besides calorimetric methods, spectral measurements of radiation extinction coefficient, and calculation of spectral extinction properties of disperse media by application of rigorous Mie-theory of scattering and of the Rosseland mean, provide another approach to radiative heat flow and to temperature dependent radiation extinction properties. Accordingly, comparison between results obtained from three different, completely independent methods (calorimetric, spectroscopic and theoretical) to determine extinction coefficients can be made and indeed proves to be successful if the medium is non-transparent; this proof of concept shall be demonstrated in the present thesis. In its first part, this thesis for habilitation presents a general review covering the literature on radiative transfer up to the year 1985 and evaluates methods for solution of the equation of radiative transfer also in case of strongly anisotropic scattering. Because of conservation of energy, and in view of the goal to analyse also the non-radiative heat transfer components, the analysis necessarily must include a description of the theoretical aspects of gaseous and solid/solid contact conduction heat transfer mechanisms. At the end of its first part, a catalogue of open questions is presented that will be tackled in the second part of the thesis. There, experimental and analytical/numerical results that verify the radiation diffusion model and its applicability to disperse media are reported. The analysis is focused on heat transfer in pure and opacified powders and fibrous media; both are easily accessible, disperse sample substances with well defined physical/thermal properties. An important part of these investigations covers thermal conductivity measurements under vacuum and under external mechanical load. Experimental results obtained with load-bearing, evacuated boards of glass fibre paper demonstrate smallest values of thermal conductivity that have been obtained until 1985 in such disperse media at high temperatures. The thesis further deals with the problem of how to substantially increase radiation extinction by optimum particle diameters. In particular, an exotic prediction of Mie theory of scattering shall be confirmed according to which the extinction properties of perfectly electrically conducting, long, extremely thin cylinders (below 50 nm) shall be larger, by orders of magnitude, than those of conventional, non-conducting powders or fibres, and samples shall be prepared. The thesis describes the way how to successfully prove this prediction (few years after submission of the thesis, following the methods suggested here and using finest metallised glass fibres, and with very thin Ni-fibres, Gustav Mie’s and Milton Kerker's predictions for the first time were confirmed in publications of the present author together with J. Fricke, M. Arduini-Schuster, H.-P. Ebert, R. Caps, D. Büttner und A. Kreh).show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Harald Reiss
URN:urn:nbn:de:bvb:20-opus-66669
Document Type:Habilitation
Granting Institution:Universität Würzburg, Fakultät für Physik und Astronomie
Faculties:Fakultät für Physik und Astronomie / Physikalisches Institut
Date of final exam:1986/07/02
Language:German
Year of Completion:1985
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
GND Keyword:Strahlungstransport; Disperse Phase; Extinktion; Mie-Streuung; Wärmeleitung
Tag:Diffusionsmodell; Superisolierung; Wirkungsquerschnitt; optimale Teilchendurchmesser
Diffusion model; optimum particle diameter; reaction cross section; superinsulation
Release Date:2011/12/19
Advisor:Prof. Dr. Jochen Fricke
Note:
Würzburg, Univ., Habil.-Schr., 1988
Licence (German):License LogoDeutsches Urheberrecht