## Mathematical Modeling of Complex Fluids

Please always quote using this URN: urn:nbn:de:bvb:20-opus-83533
• This thesis gives an overview over mathematical modeling of complex fluids with the discussion of underlying mechanical principles, the introduction of the energetic variational framework, and examples and applications. The purpose is to present a formal energetic variational treatment of energies corresponding to the models of physical phenomena and to derive PDEs for the complex fluid systems. The advantages of this approach over force-based modeling are, e.g., that for complex systems energy terms can be established in a relatively easy way,This thesis gives an overview over mathematical modeling of complex fluids with the discussion of underlying mechanical principles, the introduction of the energetic variational framework, and examples and applications. The purpose is to present a formal energetic variational treatment of energies corresponding to the models of physical phenomena and to derive PDEs for the complex fluid systems. The advantages of this approach over force-based modeling are, e.g., that for complex systems energy terms can be established in a relatively easy way, that force components within a system are not counted twice, and that this approach can naturally combine effects on different scales. We follow a lecture of Professor Dr. Chun Liu from Penn State University, USA, on complex fluids which he gave at the University of Wuerzburg during his Giovanni Prodi professorship in summer 2012. We elaborate on this lecture and consider also parts of his work and publications, and substantially extend the lecture by own calculations and arguments (for papers including an overview over the energetic variational treatment see [HKL10], [Liu11] and references therein).
• Die vorliegende Masterarbeit beschaeftigt sich mit der mathematischen Modellierung komplexer Fluessigkeiten. Nach einer Einfuehrung in das Thema der komplexen Fluessigkeiten werden grundlegende mechanische Prinzipien im zweiten Kapitel vorgestellt. Im Anschluss steht eine Einfuehrung in die Modellierung mit Hilfe von Energien und eines variationellen Ansatzes. Dieser wird im vierten Kapitel auf konkrete Beispiele komplexer Fluessigkeiten angewendet. Dabei werden zunaechst viskoelastische Materialien (z.B. Muskelmasse) angefuehrt und ein ModellDie vorliegende Masterarbeit beschaeftigt sich mit der mathematischen Modellierung komplexer Fluessigkeiten. Nach einer Einfuehrung in das Thema der komplexen Fluessigkeiten werden grundlegende mechanische Prinzipien im zweiten Kapitel vorgestellt. Im Anschluss steht eine Einfuehrung in die Modellierung mit Hilfe von Energien und eines variationellen Ansatzes. Dieser wird im vierten Kapitel auf konkrete Beispiele komplexer Fluessigkeiten angewendet. Dabei werden zunaechst viskoelastische Materialien (z.B. Muskelmasse) angefuehrt und ein Modell fuer solche beschrieben, bei dem Eigenschaften von Festkoerpern und Fluessigkeiten miteinander kombiniert werden. Anschliessend untersuchen wir den Ursprung solcher Eigenschaften und die Auswirkungen von bestimmten Molekuelstrukturen auf das Verhalten der umgebenden Fluessigkeit. Dabei betrachten wir zunaechst ein Mehrskalen-Modell fuer Polymerfluessigkeiten und damit eine Kopplung mikroskopischer und makroskopischer Groessen. In einem dritten Beispiel beschaeftigen wir uns dann mit einem Model fuer nematische Fluessigkristalle, die in technischen Bereichen, wie beispielsweise der Displaytechnik, Anwendung finden. Geschlossen wird mit einem Ausblick auf weitere Anwendungsgebiete und mathematische Probleme. Wir folgen einer Vorlesung von Professor Dr. Chun Liu von der Penn State University, USA, die er im Sommer 2012 im Rahmen einer Giovanni-Prodi Gastprofessur an der Universitaet Wuerzburg ueber komplexe Fluessigkeiten gehalten hat. Bei der Ausarbeitung werden ebenfalls Teile seiner Veroeffentlichungen aufgegriffen und die Vorlesung durch eigene Rechnungen und Argumentationsschritte deutlich erweitert.